Pseudovitenskapelige påstander om mat og helse:
En spørreundersøkelse av studenter i ernærings-, fysioterapeut- og sykepleierutdanninger

Erik Arnesen

Avdeling for helse, ernæring og ledelse
Forord

Å skrive masteroppgave var mye vanskeligere enn jeg trodde! Når den nå endelig er ferdig, innsen jeg at det har vært en morsom og givende prosess, selv om det til tider har føltes som en slitsom og tung bør.

Selv om masteroppgaven er en nokså ensom befatning, er det noen jeg må takke for god hjelp underveis. En stor takk til min tålmodige veileder førsteamanuensis dr. scient. Sverre Pettersen, Fakultet for helsefag, Høgskolen i Oslo og Akershus, som i stor grad ga meg ideen til denne oppgaven og som ikke minst har bidratt med uvurderlige forslag og råd.

Jeg vil også takke alle studentene som deltok i undersøkelsen samt de av mine medstudenter som kom med svært nyttige tilbakemeldinger om spørreskjemaet. Bibliotekarene på Kjeller forjener også ros for god service i forbindelse med anskaffelse av artikler og bøker.

Til slutt vil jeg takke min samboer Vincent for å ha holdt ut med meg og rotet mitt i de mest intensive skriveperiodene!

Oslo, 10. november 2012.
Innhold
Forord... ii
Tabeller og figurer.. vi
Forkortelser og akronymer ... vii
Sammendrag.. viii
Abstract ... ix
1. Innledning... 1
2. Teori ... 6
 2.1 Pseudovitenskap som konstrukt .. 6
 2.2 Pseudovitenskapelige oppfatninger om mat og helse .. 9
 2.3 Ernæringskunnskap og -oppfatninger blant helsepersonell og helsefagstudenter....... 13
 2.4 Alternativ behandling .. 15
 2.5 Paranormale fenomener. .. 16
 2.6 Hvorfor tror folk på pseudovitenskap? ... 17
 2.6.1 Vitenskapelig allmenndannelse ... 20
 2.6.2 Kritisk health literacy .. 21
 2.6.3 Intuitiv og rasjonell tenkning – følelser og fornuft. ... 21
 2.7 Pseudoscientific Beliefs about Food and Health-indeksen ... 23
3. Metode ... 25
 3.1 Måling av holdninger .. 25
 3.2 Utvikling av spørreskjemaet ... 27
 3.3 Uavhengige variabler .. 29
 Paranormale fenomener ... 29
 Holdninger til alternativ behandling ... 30
 Preferanser for det “naturlige” ... 30
 Kunnskaper .. 30
 Kritisk holdning til kostholdsinformasjon ... 31
Tenkemåter .. 31
Tro på vitaminer .. 32
Demografiske variabler ... 32
3.4 Pilottest ... 33
3.5 Rekruttering av deltakere .. 33
3.6 Forskningsetiske hensyn ... 34
3.7 Validitet ... 35
 Konstruktvaliditet .. 36
 Innholdsvaliditet ... 36
 Kriterievaliditet ... 37
3.8 Reliabilitet ... 37
3.9 Statistiske analyser ... 38
 Faktoranalyse .. 39
 Multippel regresjonsanalyse .. 42
4. Resultater .. 44
4.1 Utvalg ... 44
 Demografi .. 44
4.2 Pseudovitenskapelige holdninger .. 45
 Oppsummering av forskningsspørsmål 1 ... 51
 Kunnskap om ernæring og helse .. 51
 Korrelasjoner mellom pseudovitenskapelige holdninger, kunnskap og utdanning... 54
 Oppsummering av forskningsspørsmål 2 ... 55
 Holdninger til alternativ behandling ... 56
 Tro på paranormale fenomener .. 57
 Tenkemåte .. 57
 Preferanse for naturlighet ... 59
 Oppsummering av forskningsspørsmål 3 ... 62
Tabeller og figurer

Tabell 1 Kjennetegn på pseudovitenskap .. 8
Tabell 2 Beskrivelse av utvalgets bakgrunnsvariabler .. 45
Tabell 3 Faktoranalyse av PBFH-konstrukteta .. 46
Tabell 4 PBFH-konstruktets gjennomsnitt og standardavvika 48
Tabell 5 Andel riktige svar på kunnskapstesten .. 52
Tabell 6 Holdninger til kilder til kostholdsinformasjon, gjennomsnitt og standardavvik 54
Tabell 7 Korrelasjoner mellom PBFH-konstruktet og bakgrunnsvariablene 55
Tabell 8 Holdninger til alternativ behandling, gjennomsnitt og standardavvik 56
Tabell 9 Tro på paranormale fenomener, gjennomsnitt og standardavvik 57
Tabell 10 Faktoranalyse av holdningsutsagnene fra REI .. 58
Tabell 11 Preferanser for ”naturlighet” ... 60
Tabell 12 ”Tro på vitaminer” ... 61
Tabell 13 Korrelasjoner mellom PBFHa-konstruktet og holdningsvariablene 62
Tabell 14 Regresjonsanalyse med PBFHa som avhengig variabel, β-verdier (Standardiserte regresjonskoeffisienter) ... 64

Figur 1 Eksempel på et skreadplott ... 41
Figur 2 Fordeling av skårene på PBFH .. 50
Forkortelser og akronymer

<table>
<thead>
<tr>
<th>Akronym</th>
<th>Beskrivelse</th>
</tr>
</thead>
<tbody>
<tr>
<td>FI</td>
<td>Faith in Intuition</td>
</tr>
<tr>
<td>KMO</td>
<td>Kaiser-Meyer-Olkin measure of sampling adequacy</td>
</tr>
<tr>
<td>MBFH</td>
<td>Magical Beliefs about Food and Health Scale</td>
</tr>
<tr>
<td>NFC</td>
<td>Need for Cognition</td>
</tr>
<tr>
<td>NSD</td>
<td>Norsk samfunnsvitenskapelig datatjeneste</td>
</tr>
<tr>
<td>PBFH</td>
<td>Pseudoscientific Beliefs about Food and Health</td>
</tr>
<tr>
<td>PCA</td>
<td>Principal component analysis (prinsipalkomponentanalyse)</td>
</tr>
<tr>
<td>PSBI</td>
<td>Pseudo-Scientific Belief Index</td>
</tr>
<tr>
<td>REI</td>
<td>Rational-Experiential Inventory</td>
</tr>
<tr>
<td>SD</td>
<td>Standard Deviation (standardavvik)</td>
</tr>
<tr>
<td>SE</td>
<td>Standard Error (standardfeil)</td>
</tr>
</tbody>
</table>
Sammendrag

Ettersom helsepersonell er en viktig kilde til helse- og kostholdsinformasjon for både pasienter og den generelle befolkningen, er vitenskapeligheten i deres meninger og oppfatninger om kosthold et viktig spørsmål.

Riktig informasjon om kosthold er viktig for at forbrukerne skal kunne ta informerte valg om hva de bør spise for helsa. I dagens informasjonslandskap kan imidlertid alle spre sine oppfatninger om hva folk bør spise, deriblant kostholdsråd som kan være basert på myter, misoppfatninger og ”pseudovitenskap”. Helsepersonell spiller viktige roller som ernæringskommunikatører, og har dermed mulighet til å sørge for at pasienter og forbrukere ikke får falske forhåpninger om helserelaterte spørsmål. Graden av vitenskapelighet i den helseinformasjon som helsefagarbeidere og ernæringsfysiologer formidler kan få variierende følger for pasienter – muligens også for helsefagenes anseelse som vitenskapelig basert utdanning. Utbredelsen av misoppfatninger og pseudovitenskapelige tilnærminger til mat og helse i Norge er trolig et lite utforsket tema. Hensikten med denne masteroppgaven var derfor å utføre en preliminær undersøke av misoppfatninger og pseudovitenskapelige holdninger til mat og helse blant norske helsefagstudenter, og å undersøke hva som karakteriserer studenter med tiltro vs. mistro til pseudovitenskapelige helsepåstander. Utvalget besto av studenter innen ernæring/samfunnsernæring, fysioterapi og sykepleie ved flere norske utdanningsinstitusjoner (N = 101). Det ble utviklet et spørreskjema som skulle måle graden av enighet (fra ”sterkt uenig” til ”sterkt enig”, langs en 5-punkts Likert-skala) til en rekke pseudovitenskapelige ernærings- og helsepåstander. Variablene ble slått sammen til en indeks, eller et konstrukt, kalt Pseudoscientific Beliefs about Food and Health (PBFH).

Det ble gjort korrelasjonsanalyser med en rekke demografske variabler og holdningskonstrukter for utvalget. Hierarkisk multippel regresjonsanalyse viste at positiv holdning til alternativ behandling, bruk av antioksidanttilskudd og tiltro til kostholdsråd innen alternativ behandling bidro signifikant til å predikere den oppnådde variansen i PBFH.

Denne pilotstudien foreslår en målemetode for PBFH, og gir også en teoretisk, preliminær indikasjon på hva som kan forklare tro på pseudovitenskapelige påstander om mat og helse.
Abstract

As health care workers are important sources of health and nutrition information for both patients and the public in general, the scientific accuracy of their opinions and conceptions about food is an important issue. Correct dietary information is important for consumers to make informed choices about what to eat. However, in today’s information landscape, everyone can spread their opinions about what people should eat, including dietary advice grounded in myths, misconceptions and pseudoscience. Health care workers play important roles as nutrition communicators, and therefore have a possibility to ensure that patients and consumers will not get false hopes about health-related issues. The degree of science in the health information which health care workers and nutritionists communicate may have various consequences for the patients – and possibly for the health sciences’ reputations as science-based educations. The prevalence of misconceptions and pseudoscientific approaches to food and health in Norway is probably not a much explored subject. Thus the purpose of this master thesis was to conduct a preliminary survey of misconceptions and pseudoscientific beliefs about food and health among Norwegian health sciences’ students, and to examine what characterizes students with beliefs vs. disbelief in pseudoscientific health claims. The sample consisted of students in nutrition/public health nutrition, physiotherapy, and nursing at several Norwegian institutions (N = 101). A questionnaire was developed which was to measure the degree of agreement (from “strongly disagree” to “strongly agree” along a 5 point Likert scale) with a number of pseudoscientific food and health claims. The variables were added into a index, or a construct, called the Pseudoscientific Beliefs about Food and Health index (PBFH).

Correlation analyses with several demographic variables and attitude constructs for the sample were performed. A hierarchic multiple regression analysis found that positive attitudes towards alternative medicine use of antioxidant supplements and belief in dietary advice from alternative medicine significantly predicted the achieved variance in PBFH.

This pilot study suggests a measuring tool for PBFH and also gives a theoretical, preliminary indication about what may explain beliefs in pseudoscientific claims about food and health.
1. Innledning

folkegrupper. Og aldri har hysteriet vært verre.”. I Norge selges det kosttilskudd og helsekost for minst 2,1 milliarder kroner årlig (Bugge, 2012). Dette er produkter helsemyndighetene anser som ”unødvendig for de fleste” (Nasjonalt råd for ernæring, 2011).

Effektiv og nyttig helsekommunikasjon karakteriseres blant annet av å være pålitelig og korrekt (Parvanta, 2011; Social Issues Research Centre, 2001; U. S. Department of Health and Human Services, 2001). At kostholdsrådene som gis til befolkningen bør være evidensbaserte er det bred enighet om (Asp & Bryngelsson, 2008; Brunner et al., 2001; Cooper & Zlotkin, 2003; King, 2007; Margetts, Vorster, & Venter, 2002). I dagens informasjonslandskap kan imidlertid alle spre sine oppfatninger om hva folk bør spise, også kostholdsråd basert på myter, misoppfatninger og pseudovitenskap. For å kunne orientere seg i ”informasjonsjungelen” og kunne skille mellom vitenskapelig og pseudovitenskapelig kostholdsinformasjon, er det trolig nødvendig med en høy grad av vitenskapelig og helsefremmende allmenndannelse (engelsk: health literacy), dvs. en evne til å anskaffe seg, bearbeide og forstå grunnleggende helse- og ernæringsinformasjon for videre å kunne ta informerte og sunne valg (Finbråten & Pettersen, 2009; Nutbeam, 2000).

Nordmenn er generelt positive til vitenskap (Sjøberg, 2010). Til tross for at vitenskap og rasjonalitet har høy status, har imidlertid ikke overtro og magisk tenkning blitt fordrevet helt (Nemeroff & Rozin, 2000). I vårt opplyste samfunn er overtro bare kvalitativt forskjellig fra overtro fra tidligere tider, og det er få områder hvor den er mer utbredt og synlig enn mat (Lindeman, Keskivaara & Roschier, 2000). For eksempel brukes som nevnt store beløp på alternative terapier og kosttilskudd som mangler vitenskapelig støtte. Forbrukerne påvirkes trolig av andre perspektiver enn vitenskapelige og offisielle råd. Én kilde til informasjon er ansatte i helsevesenet. Helsefagarbeidere kan komme til å spille viktige roller som ernæringskommunikatører (Brotons, Ciurana, Piñeiro, Kloppe, Godycki-Cwirko & Sammut, 2003; Dean, 2009; Morris, Kitchin & Clark, 2009; Sjøen, 1999; Sortland, 1997), og har
dermed mulighet til å sørge for at pasienter og forbrukere ikke får falske forhåpninger om løsninger på helserelaterte problemer de måtte ha (referanse).

Ifølge den felles rammeplanen for de helsefaglige utdanningsene i Norge (ergoterapi-, fysioterapi-, radiograf-, sykepleie-, vernepleie-, sosionom- og barnevernspedagogutdanningsene), skal alle helsefagstudenter ha minst seks studiepoeng i vitenskapsteori og metode utgjøre, deriblant å kunne lese og tolke forskning og å ”kunne begrunne sine handlinger ... ut fra et vitenskapsteoretisk og forskningsmetodisk syn” (Kunnskapsdepartementet, 2008, p. 3). Sykepleiere har vitenskapsteori og forskningsmetode i sin utdanning, men det er vist at norske sykepleieer studenter har mangelfull kompetanse til kritisk å vurdere helsepåstander på et vitenskapelig grunnlag (Dalane, 2011; Hommelstad og Ruland, 2004; Solberg og Pettersen, 2004). At flere av fremtidens helsepersonell, som skal utføre en praksis basert på et vitenskapelig grunnlag, ikke har evner til å skille mellom vitenskap og ikke-vitenskap kan i verste få uheldige konsekvenser for pasienter.

Problemet er imidlertid ikke nødvendigvis den direkte skaden som påføres folk som følger pseudovitenskapelige kostholdsråd. Vel så alvorlig er pseudovitenskapens potensielle bidrag til at befolkningen får mistillit til offisielle, vitenskapelig baserte kostholdsråd, noe man kan se tendenser til i dagens samfunn (Bugge, 2012). Graden av vitenskapelighet i den helseinformasjon som helsefagareide og ernæringsfysiologer formidler kan få varierende følger for pasienter – og muligens også for helsefagenes anseelse som vitenskapelig basert utdanning.

Utbredelsen av misoppfatninger og pseudovitenskapelige tilnær lingerer til mat og helse i Norge er trolig et lite utforsket tema. Likeledes finnes det lite forskning om mulige årsaker til hvorfor mange i stor grad følger pseudovitenskapelige kostholdsråd. Hensikten med denne masteroppgaven er derfor å undersøke misoppfatninger og pseudovitenskapelige
holdninger til mat og helse blant norske helsefagstudenter, og hva som karakteriserer studenter med tiltro vs. mistro til pseudovitenskapelige helsepåstander.

Undersøkelsen har primært fire forskningsspørsmål:

1) I hvilken grad forekommer tro på pseudovitenskapelige helsepåstander blant helsefagstudenter?

2) Har tro på pseudovitenskapelige helsepåstander en sammenheng med utdanning, holdninger til kostholdsinformasjon, kunnskap om ernæring og helse og bruk av kosttilskudd?

3) Har tro på pseudovitenskapelige helsepåstander en sammenheng med tro på alternativ behandling, paranormale fenomener, tenkemåter, tro på vitaminer og preferanser for ”naturlighet”?

4) Hva predikerer troen på pseudovitenskapelige påstander?

Oppbygging av oppgaven

I oppgavens teorikapittel (kapittel 2) vil teoretiske begreper og rasjionale for etablering av indekser/konstruktør som ble brukt i analysene bli gjennomgått. Hovedtemaet for undersøkelsen vil bli plassert i et teoretisk rammeverk som utgjør tanken bak formuleringen av de fire forskningsspørsmålene.

Operasjonaliseringen av variablene i analysen vil bli redegjort for i kapittelet Metode (kapittel 3). Der forklares også hvilke statistiske analyser som har blitt brukt, studiens validitet og reliabilitet, samt etiske betraktninger.

I kapittel 5, resultatkapittelet, presenteres foruten demografi svar på hvert av de fire forskningsspørsmålene. Resultatene drøftes så i diskusjonskapitelet (kapittel 6), henholdsvis som en metodediskusjon og resultatdiskusjon. Tilslutt følger forslag til implicasjoner og videre forskning på temaet.
2. Teori

2.1 Pseudovitenskap som konstrukt

Å sette opp ett enkelt kriterium for hva som skiller vitenskap fra pseudovitenskap er altså problematisk, men kanskje er det heller ikke nødvendig, for, som Thagard sier: ”Konsepter karakteriseres ikke av strenge definisjoner, men av beskrivelser av prototypiske trekk og standardeksempler.” (Thagard, 2010, s. 26, min utheving). Hvordan kan så pseudovitenskap beskrives?

Ifølge Martin (1994) er pseudovitenskap en ”systematisk samling av påstander, handlinger og holdninger som ser ut til å være vitenskap, men som ikke er det.” (s. 361, min egen oversettelse). Han beskriver pseudovitenskap på to nivåer; dens overflate- og dybdeegenskaper. På overflaten kjennetegnes pseudovitenskap av at den bruker et teknisk språk for å uttrykke omfattende og imponerende teorier, den påstår at teorien er støttet av evidens, det brukes komplekse og oppfinnsomme argumenter mot kritikk, det skoleres egne utøvere, opprettes organisasjoner, publiseres tidsskrifter og det brukes autoritative tekster. Dette gir pseudovitenskapen et ”skinn” av vitenskap. Blant dybdeegenskapene til
pseudovitenskapen er påstander som ikke er testet eller ikke er testbare, eller som kanskje allerede er motbevist, forsøk på å hindre kritiske tester av teorien og bortforklaring av alle negative funn, forsøk på isolasjon fra vitenskapsmiljøet, dogmatiske og paranoide holdninger og intoleranse mot alle andre teorier. Disse egenskapene er skjulte, men avslører pseudovitenskapens uvitenskapelige natur (ibid.).

I Tabell 1 gis en oversikt over ulike pseudovitenskapelige og vitenskapelige særpreg som er nevnt i litteraturen (Afonso & Gilbert, 2010; Gray, 1991; Martin, 1994; Novella, 2000; Sokal, 2006; Thagard, 2010). Imidlertid er ingen av disse kjennetegnene nødvendigvis nødvendige eller tilstrekkelige.
Tabell 1 Kjennetegn på pseudovitenskap

<table>
<thead>
<tr>
<th></th>
<th>Vitenskap</th>
<th>Pseudovitenskap</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forklarer ved hjelp av mekanismer.</td>
<td>Mangler mekanistiske mekanismer.</td>
<td></td>
</tr>
<tr>
<td>Bruker korrelasjoner, dvs. statistiske metoder, for å finne mønstre i naturen.</td>
<td>Bruker dogmatiske påstander eller likhetsteknik, dvs. at ting er kausalt knyttet til hverandre fordi de er like.</td>
<td></td>
</tr>
<tr>
<td>Utøverne er opptatt av å evaluere teorier i forhold til alternative teorier.</td>
<td>Utøverne er fremmede og intolerante for alternative teorier.</td>
<td></td>
</tr>
<tr>
<td>Bruker enkle teorier som har vid forklaringskraft.</td>
<td>Bruker kompliserte teorier som krever mange ekstra hypoteser for bestemte forklaringer.</td>
<td></td>
</tr>
<tr>
<td>Utvikler seg over tid ved å utvikle nye teorier som forklarer nye fakta.</td>
<td>Stillestående kunnskapsbase som ikke utvider seg med erfaring.</td>
<td>Likegyldighet overfor motsidende evidens.</td>
</tr>
<tr>
<td>Gjør kontrollerte eksperimenter</td>
<td>Mangler kontrollerte studier.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bruk av obskurt språk i beskrivelsene av fenomener.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gir påstander om ekte eller påståtte fenomener og eller virkelige påståtte sammenhenger som konvensjonell vitenskap med god grunn anser som ytterst usannsynlig.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Spuriøse, grovt misbrukte eller ytterst lite overbevisende bevis.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mangler vitenskapens kritiske ånd og robuste empiriske støtte.</td>
<td></td>
</tr>
<tr>
<td>Teknisk vokabular for å uttrykke hypoteser presist</td>
<td>Påstander i et teknisk språk som brukes for å uttrykke omfattende og imponerende teorier, eller for å tåkelegge.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bruk av komplekse og oppfinnsomme argumenter mot kritikk.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bruk av autoritative tekster.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Påstander som er motbevist, ikke er testet eller ikke er testbare.</td>
<td></td>
</tr>
<tr>
<td>Tester teorier og hypoteser kritisk, modifiserer dem i lys av data.</td>
<td>Forsøker å hindre kritiske tester av teorien.</td>
<td>Forsøk på isolasjon fra vitenskapsmiljøet.</td>
</tr>
</tbody>
</table>
Tabell 1, forts.

<table>
<thead>
<tr>
<th></th>
<th>Dogmatiske og paranoide holdninger.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruker skeptisisme som et essensielt</td>
<td>Har en negativ holdning til skeptisisme.</td>
</tr>
<tr>
<td>verktøy for å skaffe kunnskap.</td>
<td></td>
</tr>
<tr>
<td>Kombinerer et åpent sinn med kritisk</td>
<td>Tror et åpent sinn er det samme som et ukritisk sinn.</td>
</tr>
<tr>
<td>tenkning.</td>
<td></td>
</tr>
<tr>
<td>Krever gjen takelser</td>
<td>Krever ikke gjentakelser.</td>
</tr>
<tr>
<td>Krever testbarhet</td>
<td>Har påstander som ofte ikke testbare.</td>
</tr>
<tr>
<td>Må være kompatibelt med eksisterende</td>
<td>Er ofte ikke kompatibelt med eksisterende kunnskap.</td>
</tr>
<tr>
<td>kunnskap.</td>
<td></td>
</tr>
<tr>
<td>Søker å falsifisere data</td>
<td>Søker å bortforklare eller ignorere falsifiserende data.</td>
</tr>
<tr>
<td>Bruker et spesifikt språk.</td>
<td>Bruker et vakt språk.</td>
</tr>
<tr>
<td>Er empirisk.</td>
<td>Er ikke empirisk.</td>
</tr>
<tr>
<td>Beskyttet seg mot forskerens påvirkning</td>
<td>Er utsatt for forskerens påvirkning</td>
</tr>
<tr>
<td>Er selvkorrigerende.</td>
<td>Er ikke selvkorrigerende.</td>
</tr>
<tr>
<td>Produserer kunnskap.</td>
<td>Produserer tro, men ikke kunnskap.</td>
</tr>
<tr>
<td></td>
<td>Lover enkle løsninger på komplekse problemer.</td>
</tr>
<tr>
<td></td>
<td>Skyver bevisbyrden over på kritikerne.</td>
</tr>
</tbody>
</table>

2.2 Pseudovitenskapelige oppfatninger om mat og helse

Each field of science has its own complement of pseudoscience.

(Sagan, 1997, p. 43)

opplysning og "vitenskapelige” fremskritt” (ibid., s. 36), og som hadde kostholdet som hovedsak. Oppdagelsen av vitaminene i første halvdel av det 20. århundre førte til nok en bølge av pseudovitenskapelige påstander. Under The National Congress on Medical Quackery i Washington, D. C. i 1961, ble det påstått at …

The most widespread and expensive type of quackery (...) today is the promotion of vitamin products, special dietary foods, and food supplements....

Complicating this problem is a vast and growing “folklore” or “mythology” of nutrition which is being built up by pseudoscientific literature in books, pamphlets, and periodicals (Larrick, 1961).

Troen på at kostholdet er den viktigste faktoren i praktisk talt alle livets aspekter – en "overdrevet tro på ernæringens virkning på helse og sykdom” (Jarvis, 1983, s. 36) – er noe Jarvis definerer som food faddism, noe som kan oversettes til kostholdsfanatisme. Food cultism (kostholdsksultus) har i tillegg en religiøs komponent (ibid.) ”Kostholdsksultister” er sterkt opptatt å spise riktig, og har stor tiltro til karismatiske autoriteter. Videre definerer Jarvis Food quackery som ”entrepenørmessige sider av matfanatisme”, dvs. salg av tvilsomme ernæringsprodukter og –tjenester (ibid.).

The American Dietetic Association (nå Academy of Nutrition and Dietetics) ga i 2006 en uttalelse om misvisende ernæringsinformasjon, inkludert ti tegn på betenkkelig ernæringsinformasjon (American Dietetic Association, 2006, p. 605, min oversettelse):

1. Råd som lover raske løsninger.
2. Skremmende advarsler om farer ved enkeltprodukter eller dietter.
4. Enkle konklusjoner fra en kompleks studie.
5. Anbefalinger basert på en enkeltstudie.
6. Dramatiske utsagn som er avkrefdet av respektabel vitenskapelige organisasjoner.
7. Lister med «gode» og «dårlige» matvarer.
8. Anbefalinger som gis for å selge et produkt.
10. Anbefalinger basert på studier som ignorerer forskjeller mellom individer eller grupper.

Ifølge Barrett og Herbert (1999) finnes det fem grunnleggende feilslutninger om ernæring:

1) Matforsyningen er ernæringsmessig utilstrekkelig fordi jorda er utarmet og viktige næringsstoffer blir fjernet under bearbeiding.
2) Vitamin- og mineralmangel er utbredt, derfor bør alle ta kosttilskudd.
3) De fleste helseproblemer skyldes feil kosthold, og kan behandles med ernæring.
4) Folk står i fare for å bli giftet av tilsetningsstoffer og sprøytemiddelrester i maten.
5) Personlig erfaring er den beste måten å si om en helseatferd er effektiv eller ikke. (ibid., s. 1793, min overs.)

Som nevnt ovenfor er ett av kjennetegnene ved pseudovitenskap bruk av et teknisk og obskurt språk, eller det som i helsesammenheng har vært kalt ”pseudomedisinsk sjargong” (Herbert, 1993, p. 27). Å ”detoksifisere” (rense) kroppen, ”balansere” kroppens kjemi, frigjøre ”nerveenergi”, ”stimulere” eller ”styrke” immunnforsvaret er eksempler på vitenskapelig lydende begrep som er vanskelige å teste og dermed bevises å være feil (Herbert, 1993, p. 27). Slike uttrykk kan derfor i visse kontekster beskrives som pseudovitenskapelige. Andre eksempler på påstander med trekk som er karakteristiske for pseudovitenskap er ”øker de uttømte energinivåene ... opprettholder vitaliteten”, ”Molekylene i Alkalisert Vann er redusert til en størrelse slik at kroppen bedre kan oppta vannet”1 og «Boots’ Energy Super Strength CoQ10 containing natural Kaneka CoQ10 is a way of

1 http://ph-bodybalance.com/hvorfor_vann/
boosting energy levels that can help people who lack energy to see results in a week”\(^2\).

I denne masteroppgaven brukes *empiriske påstander som har et skinn av vitenskap, men som er dårlig dokumenterte eller er uforenlige med allment aksepterte kriterier for bevis* som en ”arbeidsdefinisjon” på pseudovitenskapelige påstander om mat og helse, på bakgrunn av kjenneretgnene på pseudovitenskap som er oppgitt i Tabell 1. Man kan imidlertid ikke definere en påstand som pseudovitenskapelig kun ut fra *innholdet* i påstanden; det kommer også an på hvordan påstanden er formulert og ”markedsført”, hvor skråsikker den er, m.v. Grensen mellom pseudovitenskap og vitenskap er derfor mer et spørsmål om grad enn om art. Denne definisjonen innebærer i prinsipp at det som i dag kalles pseudovitenskap *kan* bli akseptert som vitenskap i morgen.

\(^2\) http://www.dcscience.net/?p=223
2.3 Ernæringskunnskap og -oppfatninger blant helsepersonell og helsefagstudenter

Folk flest har høy tillit til kostholdsråd fra helsepersonell (de Almeida et al., 1997; Heuberger & Ivanitskaya, 2011). Det er derfor viktig å sikre at rådene som kommuniseres er evidensbaserte. Ut fra dette kan man også slutte at helsepersonell også bør ha en høyere ernæringskunnskap enn folk flest.

Dugdale, Chandler og Baghurst (1979) gjorde en undersøkelse blant praktiserende leger, medisinstudenter og sykepleierstudenter i Australia, hvor disse fikk ernæringsrelaterte spørsmål som ofte ble stilt pasienter, men som det sjeldent ble undervist om i den formelle ernæringsundervisningen (for eksempel ”Er honning sundere enn sukker?” og ”Kan to egg om dagen doble kolesterolnivået?”). Alle gruppenes tende at de visste svaret på spørsmålene, men den faktiske kunnskapen var langt mindre tilfredsstillende. Legene svarte i gjennomsnitt 79 prosent riktig, mens sykepleierstudentene svarte 52 prosent riktig – imidlertid trodde 94 prosent av sykepleierstudentene at de hadde svart riktig. Som forfatterne av studien bemerker, gir ikke disse funnene tillitt til ernæringsrådene som gis av disse gruppene. De påpeker videre at uvitenhet kan korrigeres ved hjelp av kunnskap, men at vrangforestillinger ”må motarbeides ved å demonstrere at de er feil og må forkastes” (ibid., s. 444, min oversettelse).

Til slutt påpeker de hvor vanskelig det kan være å gi den generelle befolkningen riktig kunnskap om ernæring, når selv helsepersonell kan være leverandører av myter.

Foruten rene kunnskapsundersøkelser er det gjort noe forskning på ernæringsrelatert praksis blant helsepersonell, og særlig rundt bruk av kosttilskudd. Dickinson, Boyon og Shao (2009) fant at leger og sykepleiere i USA brukte kosttilskudd i større grad enn den generelle befolkningen. De som selv tok kosttilskudd var mer tilbøyelige til å anbefale kosttilskudd til sine pasienter, bl.a. for å beskytte mot influensa eller forkjølelse, øke immunforsvaret eller gi mer energi, til tross for at det er lite bevis for noen klinisk nytte av dette (Arroll, 2005; B. Barrett et al., 2010; Douglas, Hemilä, Chalker, & Treacy, 2007; El-Kadiki & Sutton, 2005; Gleeson, Nieman, & Pedersen, 2004; Jorde et al., 2012; Mora, Iwata, & von Andrian, 2008).

Ernæringskunnskapen hos fysioterapeuter eller fysioterapistudenter ser ut til å være et hittil uutforsket tema.
2.4 Alternativ behandling

De vanligste forventningene til alternativ behandling er ifølge Ernst og Hung (2011) at det skal påvirke sykdommens naturlige forløp, forebygge sykdom, gi færre bivirkninger, gi kontroll over egen helse, lindre symptomer og øke immunforsvaret. Det er imidlertid lite innenfor spekteret av alternativ medisin som er evidensbasert (Ernst, 2011; Tonelli & Callahan, 2001).

Internasjonalt viser en del studier at sykepleiere og sykepleiestudenter ofte er mer positive til å bruke alternative behandlingsmetoder enn leger og medisinstudenter (Baugniet,

I en annen norsk studie ble det funnet at omtrent halvparten av kreftpasientene brukte helsekost, hvorav 36 prosent brukte det i forbindelse med kreftsykdommen (Johansen & Toverud, 2006). I forbindelse med kreftsykdommen var C-vitamintilskudd, produkter av noni (en frukt), selen, multivitaminer, hvitløkspiller, E-vitaminer og haibrusk de vanligste produktene. Selv om 53 prosent mente helsekost kunne være nyttig for å styrke immunforsvaret, syntes hele 86 prosent at det var "veldig vanskelig å vite hva som er sant og usant om produktene på helsekostmarkedet", og de fleste ønsket bedre informasjon om dette temaet gjennom helsevesenet. Leger, sykepleiere og dietetikere var blant informasjonskildene pasientene hadde stor tillit til, men de brukte sjeldent informasjon fra disse.

2.5 Paranormale fenomener

Den etymologiske forklaringen på ordet paranormalt er "utenfor det normale" (Para = gresk for "ved siden av" eller "utenfor"). Paranormale fenomener hentyder til fenomener som er: 1) Uforklarlige vitenskapelig sett, 2) forklarlige bare dersom man gjør store endringer i vitenskapens grunnleggende begrensende prinsipper, og 3) uforenlige med normative oppfatninger, meninger om og forventninger til virkeligheten (Tobacyk & Milford, 1983; Martin, 1994). "Vitenskapens grunnleggende begrensende prinsipper" er blant annet at en årsak må komme før en effekt, at noe som skjer mentalt ikke kan forårsake en direkte endring i den fysiske verden og at man ikke kan oppfatte fysiske fenomener eller objekter utenom via sanseorganene (Broad, 1949). Denne definisjonen på paranormalitet omfatter bl.a. religiøse

Det finnes få store undersøkelser av tro på paranormale fenomener i Norge. Med data fra to internasjonale undersøkelser (Eurobarometer, 2005; Schreiner, 2006), har Sjøberg og Schreiner (2007) sett på nordmenns holdninger og interesser rundt temaer som ligger i ”utkanten” av det som oppfattes som vitenskapelig, m.a.o. paranormale fenomener. De fant at norske 15-åringar var mest interessert i temaer som drømmetydning, spøkelerer og hekser, astrologi, fenomener som forskere ennå ikke kan forklare, tankeoverføring og tankelesning, og ”uløste mysterier” i verdensrommet, at 60 prosent av jentene var interessert i å lære om alternative terapier, og at hele 90 prosent av jentene leste horoskop.

2.6 Hvorfor tror folk på pseudovitenskap?

”The great master fallacy of the human mind is believing too much”. (Alexander Bain, 1859)

Folks tro på pseudovitenskap skyldes ikke nødvendigvis en eksplisitt tilsyn til pseudovitenskap som sådan, men det har trolig ikke-vitenskapelige grunner. Ifølge Eve og Dunn (1990), har tro på pseudovitenskap minst fire kilder: 1) Kognitive feilslutninger, som
det å overgeneralisere fra personlige erfaringer, 2) feilaktige eller sensasjonelle mediedekninger av vitenskapelige spørsmål, 3) sosiokulturelle faktorer og 4) dårlig naturfagsopplæring. Lindeman (1998) mener tro på pseudovitenskap er en funksjon av grunnleggende sosiale motiver - som det å finne mening i verden, ”finne seg selv” og føle at man har kontroll over tilværelsen - samt måten vi bearbeider informasjon på: ”Pseudovitenskap tilbyr verktøy for å forstå, akseptere og finne mening i hendelser som er vanskelige å forstå eller som ikke passer med individets behov og ønsker” (ibid. s, 258, min oversettelse). Sokal (2006) mener på sin side at pseudovitenskap kan være mer ”naturlig” for mennesket – et vitenskapelig verdensbilde er intellektuelt og emosjonelt krevende sammenliknet med ønsketenkening.

Av samfunnsmessige grunnene til at pseudovitenskapelige helseoppfatninger har blitt så populært, trekker Beyerstein (2001) fram:

- Mangelfull vitenskapelig allmenndannelse
- Anti-intellektualisme og antivitenskapelige holdninger
- Heftig markedsføring og ekstravagante påstander
- Lite kritiske medier, og angrep på de som kritiserer pseudovitenskap
- Mistillit til tradisjonelle autoriteter og til helsevesenet
- Oppfatninger om at naturlige remedyer alltid er tryggere og bedre enn syntetiske.

Han nevner også menneskets tendens til å tro på det som bekrefter våre holdninger (”confirmation bias”), logiske feilslutninger (som det å sammenblande korrelasjon og kausalitet), heuristikker, ønsketenkening, kognitiv dissonans og forventningseffekter som psykologiske årsaker til at populariteten vedvarer.

Sokal (2006) mener at det i noen tilfeller også er en konvergens mellom pseudovitenskap og postmodernisme. Pseudovitenskap faller ofte tilbake på

2.6.1 Vitenskapelig allmenndannelse. Vitenskapelig allmenndannelse innebærer bl.a. å kunne skille mellom vitenskap og ikke-vitenskap (Lundström, 2010, s. 10). Vitenskapelig allmenndannelse omfatter følgelig både vitenskapelig faktakunnskap og kunnskap om vitenskapens prosesser og kontekster (ibid.). Sagan (1996) hevdet at pseudovitenskap blir omfavnet "i eksakt proporsjon som vitenskap blir misforstått" (ibid., s. 30, min oversettelse).

tankelesning, astrologi og ”Bigfoot”) og kunnskap om vitenskapelige konsepter ved tre universiteter i USA.

Flere har funnet at det bare er en knapp sammenheng mellom tro på paranormale fenomener og intelligens, men at en tiltro til intuitiv tenkning og lav villighet til analytisk tenking (se avsnitt 2.6.3) spiller en stor rolle (Aarnio & Lindeman, 2005; Pennycook, Cheyne, Seli, Koehler, & Fugelsang, 2012; Shenhav, Rand, & Greene, 2011).

2.6.3 Intuitiv og rasjonell tenkning – følelser og fornuft. En tenkemåte, eller et tankesett, handler om hvordan man foretrekker å bearbeide informasjon. Én teori om hvilke tenkemåter som ligger bak troen på bl.a. paranormale fenomener er Epsteins Cognitive Experiential Self-Theory (CEST) (Epstein, 1994). Ifølge denne har vi alle to ulike kognitive
systemer å bearbeide informasjon med; et erfaringsbasert, automatisk system og et rasjonelt, analytisk system. Det erfaringsbaserte systemet er knyttet til intuitiv tenkning (også kalt ”System 1” (Evans, 2003)) Dette hjelper oss bl.a. med å ta raske beslutninger, men fungerer dårlig i situasjoner som krever logiske analyser (Denes-Raj & Epstein, 1994). Tro og holdninger som er basert på intuitiv tenkning er også vanskelige å endre, og er lite mottakelige for logiske argumenter. Den intuitive tenkemåtenes ortogonale motsetning er den rasjonelle eller analytiske tenkemåten (også kalt ”System 2” (Evans, 2003)). Dette er en rent saklig tenkemåte som er basert på logikk og evidens. Den rasjonelle tenkemåten kom trolig relativt sent i menneskets evolusjonshistorie (Kokis, Macpherson, Toplak, West, & Stanovich, 2002). Å tenke rasjonelt er å ”ta til seg formålstjenlige mål, gjøre egnede handlinger gitt ens mål og tro, og å ha tro som er i samsvar med tilgjengelig evidens” (Stanovich, 2009, s. 3, min oversettelse).

Ifølge Lindeman (2011) utgjør intuitiv tenkning en sannsynlig kognitiv mekanisme for hvorfor holdninger til alternative behandlinger og tro på paranormale fenomener ofte ikke korrelerer med utdanning, slik det ble beskrevet ovenfor. Evnen til å tenke analytisk og rasjonelt er nemlig ikke alltid forbundet med intelligens (Stanovich, 2009). Til tross for at den konvensjonelle medisinen blir mer og mer vitenskapsbasert, holder den alternative medisinen seg populær fordi folk kan ha både rasjonelle og intuitive tanker om samme tema. Også Stanovich (1994; 2009) mener at forekomsten av pseudovitenskap i befolkningen er for stor til at man kan skydde på utilstrekkelig intelligens eller allmenndannelse: "Purely on a quantitative basis, it must be that some people with fairly high IQ are thinking quite poorly" (Stanovich, 2009, s. 12). De som tror på dette er ikke mentalt tilbakesstående, men de kan være dysrasjonelle, ifølge Stanovich (2009).

2.7 Pseudoscientific Beliefs about Food and Health-indeksen

Som nevnt i innledningen var ett av målene med denne undersøkelsen å undersøke holdninger til pseudovitenskapelige påstander om mat og helse. Det ble i den forbindelse utviklet et spørreskjema som søkte å måle grad av pseudovitenskapelige holdninger på en Pseudoscientific Beliefs about Food and Health-indeks (PBFH). Denne var i stor grad inspirert av Lindeman og kollegaers (2000) Magical Beliefs about Food and Health Scale og Lundströms (2011) Pseudo-Scientific Belief Index.

På bakgrunn av min omfattende gjennomgang av litteraturen om temaet, ble det deretter undersøkt hvilke korrelater som kunne finnes mellom nivået av PBFH og grunnleggende kunnskap om mat og helse, kritisk vurdering av kostholdsinformasjon, tro på
paranormale fenomener, tro på alternativ medisin og kosttilskudd, samt rasjonell og intuitiv tenkning.
3. Metode

Det empiriske materialet i denne undersøkelsen ble samlet inn med en selvutviklet, internettbasert spørreundersøkelse/survey (QuestBack). En spørreundersøkelse er egnet for å kunne måle holdninger blant et stort antall personer. Fordeler ved å bruke et internettbasert spørreskjema er bl.a. muligheten for absolutt anonymitet, det koster lite eller ingenting, og det kan nå fram øyeblikkelig uansett hvor respondenten befinner seg. En ulempe er imidlertid at det lett kan bli store frafall (Ringdal, 2007, p. 176).

3.1 Måling av holdninger

Psykometriske tester er en måte å måle en form for mentale indikatorer på, som for eksempel personlighet, verdier eller holdninger. Det ble i denne studien konstruert et sammensatt holdningsmål – eller en indeks – som skulle måle grad av tro på en rekke ulike pseudovitenskapelige påstander om mat og helse. Ved hjelp av faktoranalyse ble de undersøkt hvilke(n) dimensjon(er) som utgjorde strukturen for troen på de pseudovitenskapelige påstandene. Leddene som utgjorde de viktigste dimensjonene ble så satt sammen til en ”pseudovitenskapsindeks”. Psykometriske indekser er mye brukt innen bl.a. kognitiv psykologi for å utpeke segmenter med større eller mindre grad av en holdning eller opinion. Slike indekser er kombinasjoner av en rekke utsagn som respondentene blir bedt om å uttrykke sin grad av enighet med, ofte målt med en Likert-skala.

Når man skal kartlegge holdninger er det en fordel å ha en konkret definisjon på hva begrepet ”holdning” dreier seg om. Bjerke og Svebak (1997, s. 216) definerer det som ”en relativt varig evaluering av og reaksjonstilbøyelighet overfor personer, objekter, hendelser eller ideer” (forfatternes kursivering). En holdning har derfor både en kognitiv og en føllesesmessig komponent, men med ”reaksjonstilbøyelighet” mener de at holdninger også potensielt kan føre til en bestemt atferd. Holdninger dannes og endres først og fremst av erfaring (ibid.). En lignende definisjon finner vi hos Fishbein og Ajzen (1975, s. 216): En
persons holdning til noe er en funksjon av vedkommendes evalueringer av egenskapene til dette. *Holdningsspørsmål* kan således omfatte oppfatninger, tro, tanker, følelser, preferanser osv. (Ilstad, 1989, s. 48).

Uansett definisjon er holdninger som konsept et *konstrukt* – eller tankemodell – noe man per definisjon ikke kan måle direkte, men bare dedusere seg fram til ved å måle egenskaper som er *forbundet* med konstruktet. For å gjøre en kvalifisert antagelse om den ”sanne” holdningen må man benytte mange indikatorer, også kalt *testledd*. Fremfor å spørre folk direkte om de er enten for eller mot noe, måler man gjerne holdninger på en *skala*. En slik skala må kunne differensiere mellom respondenter som er enige og respondenter som er uenige med et holdningsutsagn, og den må dekke et bredt spekter av følelser overfor utsagnet – fra klart positivt til klart negativt (Henerson, Morris, & Fitz-Gibbon, 1987, s. 85-86). Mest vanlig er det å anvende Likert-skalaer (oppkalt etter Renesis Likert), hvor respondentene uttrykker sin grad av enighet med en påstand på en fempunkts skala, for eksempel 1 = sterkt uenig, 2 = uenig, 3 = ubestemt, 4 = enig og 5 = sterkt enig. I de senere år har det blitt mer vanlig å bruke en 4-punkts skala, hvor midtpunktet (”ubestemt”) er utelatt. Dette tvinger respondenten til å ta stilling til utsagnet, men det gjør også at en som faktisk ikke mener noe om et spørsmål må svare som om han var enig eller uenig (Krosnick & Presser, 2010). Jeg valgte å beholde ”ubestemt” som et svaralternativ. Holdningsskalaer med slike midtpunkt har dessuten vært vist å gi bedre reliabilitet og validitet (se Krosnick & Presser, 2010).

Et spørsmål kan stilles på uendelig mange måter. Å gjøre spørsmål og holdningsutsagn konseptuelt klare, er en vanskelig oppgave. Ringdal (2007, s. 181) gir følgende råd om måling av holdninger:

1. Forviss deg om at holdningsobjektet er klart definert.
2. Unngå flerdimensjonale spørsmål.
3. Unngå ledende spørsmål.
4. Forsøk å måle holdningenes styrke.
5. Benytt gjerne flere spørsmål til å måle holdninger til komplekse objekter.
8. I vurderingsspørsmål (holdningsspørsmål) benyttes 5-7 punkts skalaer med tekstede svaralternativer, eller analoge skalaer uten tekst hvis det er behov for flere svaralternativer.

3.2 Utvikling av spørreskjemaet

Spørreskjemaet besto av flere deler, og var satt sammen av flere måleinstrumenter fra tidligere undersøkelser, disse vil bli henvis til nedenfor. I tillegg utviklet jeg et helt nytt konstrukt med pseudovitenskapelige holdningsutsagn og meningsytringer. Alle holdningsutsagnene ble besvart på en bipolar, fempunkts Likert-skala for å måle grad av enighet med utsagnene, fra svært liten grad (= 1) via nøytral/ubestemt (= 3) til svært stor grad (= 5). I tillegg ble det gitt et sjette svaralternativ, ”Jeg har ingen kunnskaper om dette” (= 6). Dette ble inkludert for å forhindre at de som virkelig ikke hadde noen mening eller kunnskap om temaet bare skulle gi et vilkårlig svar (se ellers punkt 3.9 i dette kapitlet og diskusjonskapitlet for en videre drøfting av dette).

3.2.1 "Pseudoscienitific Beliefs about Food and Health": Måling av tro på pseudovitenskapelige påstander. Når man utvikler en indeks er det ofte for å kunne måle tilslutning til et fenomen uttrykt som et konsept, eller latent konstrukt, som ikke kan måles

Magical Beliefs About Food and Health Scale (MBFH) består av 17 utsagn om mat og helse som reflekterer ”magisk tenkning” (Lindeman et al., 2000). Svarene skåres fra 1-5 (fra sterkt uenig til sterkt enig). Skalaen har vært vist å ha høy intern konsistens og stabilitet (Aarnio & Lindeman, 2004; Lindeman et al., 2000). Eksempler på holdningsutsagn fra MBFH er (min oversettelse): ”En ubalanse mellom energistrømninger ligger bak mange sykdommer”, ”Feil kosthold får maten til å råte i kroppen” og ”Hvis vi ikke renser kroppen, vil skadelige avfallsstoffer bli værende igjen i den”.

Pseudo-Scientific Belief Index (PSBI) inneholder både vitenskapelige og pseudovitenskapelige utsagn om helse, fysiologi og ernæring, og var opprinnelig beregnet på

svenske ungdomsskoleelever (Lundström, 2011). Eksempler på pseudovitenskapelige uttagn som ble tatt med i min undersøkelse er "Smerte forbundet med revmatisme reduseres hvis du bruker magnetarmbånd", "Alle organer i kroppen kan påvirkes ved å massere bestemte punkter på foten" og "Betennelser kan kureres ved å legge edle krystaller på det syke området". Noen av indikatorene i den opprinnelige PSBI er av en mer overnaturlig art (for eksempel "Sjelen eksisterer etter at kroppen dør" og "Folk som blir drept vil stå opp igjen som spøkelser"), og disse ble utelatt fra mitt spørreskjema da de var så opplagt i strid med naturlovene at jeg mente de berørte paranormale fenomener mer enn empiriske, pseudovitenskapelige påstander.

Spørsmål om tvilsomme metoder for å gå ned i vekt ble hentet fra A study of health practices and opinions (US Food and Drug Administration, 1972), som undersøkte holdninger til en rekke helsetemaer blant amerikanere, med særlig vekt på "mottakelighet for feilslutninger og forvrengninger" (ibid., s. 1).

I tillegg til disse ble det også tatt med påstander som var mer aktuelle i tid enn mange av de ovennevnte, for eksempel at melk er slimdannende, at man bør drikke minst 8 glass vann per dag, at man trenger tilskudd av enzymer og klorofyll, og at man bør ha et kosthold med høy pH. Dette er påstander som har vært fremsatt, men som er udokumenterte og/eller mangler plausibelt grunnlag ernæringsvitenskapelig sett (Fenton, Tough, Lyon, Eliasziw & Hanley, 2011; Schwarcz, 2005; Tsindos, 2012; Valtin, 2002; Wüthrich, Schmid, Walther & Sieber, 2005).

3.3 Uavhengige variabler

blant utsagnene som ble utelatt i mitt spørreskjema, da disse påstandene ble antatt å ha støtte hos svært få. "Det finnes en djevel", "Engler eksisterer" og "Det finnes en himmel og et helvete" ble også utelatt, da disse entitetene kan sies å høre mer til i en tradisjonelle religiøs sfære enn innenfor det paranormale (selv om disse kan sies å være to sider av samme sak).

Preferanser for det “naturlige”. Disse ble også hentet fra *A study of health practices and opinions* (US Food and Drug Administration, 1972). Skalaen består av holdningsutsagn om bl.a. kjemikalier i maten, syntetiske vs. naturlige vitaminer og bearbeiding av mat.

Jeg fulgte også Dalanes tilnærmning ved å inkludere spørsmål knyttet til offisielle kostholdsanbefalinger, energigivende næringsstoffer, matvarers innhold av næringsstoffer og klinisk ernæring, da dette er emner som helsefagstudenter forventes å ha kunnskap om (Dalane, 2011). Ifølge Sjøen og Thoresen (1999) bør sykepleiere bl.a. kjenne til offisiell ernæringspolitikk, næringsstoffer, følgene av et uheldig kosthold på kort og lang sikt, og kunne ”observere, vurdere, sette inn ernæringstiltak og vurdere dem” (s. 6-7).

Fire spørsmål om fysiologi samt tre spørsmål om mat ble i tillegg hentet fra *Human Biology Knowledge Index* (Lundström, 2011): ”Hva er den viktigste funksjonen til røde

Kritisk holdning til kostholdsinformasjon. Fem utsagn om forholdet til kostholdsinformasjon ble hentet fra Kjøllesdals (2009) skala for kritisk health literacy. Av plasshensyn ble ikke alle utsagnene fra hennes opprinnelige spørreskjema tatt med. De inkluderte utsagnene var:

- Jeg lar meg påvirke av kostholdsråd jeg leser om i aviser, ukeblader o.l.
- Jeg har tiltro til at metoder innen alternativ medisin (for eksempel helsekost) gir meg troverdige kostholdsråd.
- Jeg synes det er vanskelig å skille vitenskapelig kostholdsinformasjon fra ikke-vitenskapelig kostholdsinformasjon.
- Jeg har tiltro til at medias presentasjon av nye vitenskapelige funn omkring sunt kosthold er riktig.
- Jeg baserer mitt kostholdsråd på informasjon jeg får fra vitenskapelig anerkjent faglitteratur (for eksempel fagfellevurderte tidsskrifter, Helsedirektoratet o.l.).

Som med de andre variablene ble også disse målt på en Likert-skala fra 1 til 5.

Tenkemåter. Epstein, Pacini, Denes-Raj og Heiers Rational-Experiential Inventory (REI) er en skala som måler individuelle forskjeller i rasjonell og erfaringsbasert/intuitiv tenkning (Epstein et al., 1996; Pacini & Epstein, 1999). Denne består igjen av to polariserte skalaer, *Need For Cognition*-skalaen (NFC) og *Faith in Intuition*-skalaen (FI), som måler henholdsvis rasjonell og intuitiv tenkning. NFC består av holdningsutsagn som (mine oversettelser) "Jeg vil heller gjøre noe som krever lite tenkning enn noe som helt sikkert vil utfordre mine tenkeevner”, "Jeg liker ikke å ha ansvaret for situasjoner som krever mye tenkning” og "Jeg foretrekker komplekse fremfor enkle løsninger”, som beskriver i hvilken
grad man liker kognitive utfordringer. Eksempler på holdningsutsagn fra FI er "Mine førsteinntrykk av folk stemmer nesten alltid", "Jeg stoler på mine første følelser om folk" og "Når det gjelder å stole på folk, kan jeg som regel stole på 'magefølelsen'" (Epstein et al., 1996). Disse to komponentene korrelerer ikke med hverandre, noe som tyder på at de er uavhengige (Epstein et al., 1996; Pacini & Epstein, 1999). NFC og FI har vist Cronbachs alfa på hhv. 0,87 og 0,77 blant psykologistudenter (Epstein et al., 1996). De 31 holdningsutsagnene i REI ble oversatt til norsk av meg og inkludert i det endelige spørreskjemaet.

Tro på vitaminer. Seks utsagn ble valgt ut og oversatt fra Health practices and opinions (US Food and Drug Administration, 1972) for å undersøke oppfatninger om vitaminer:

1. Alle som spiser balanserte måltider her i landet kan få i seg nok vitaminer gjennom den vanlige maten.
2. Dersom folk føler seg trette og utkjørte, trenger de sannsynligvis mer vitaminer eller mineraler.
3. Eldre mennesker trenger omtrent like mye vitaminer som unge voksne.
4. Folk som spiser et variert utvalg av tilgjengelig mat hver dag kan få i seg alle vitaminer og mineraler de trenger.
5. Mange sykdommer, særlig leddgikt og kreft, skyldes delvis mangel på vitaminer og mineraler.
6. Folk kan beskytte helsa ved å innta mer vitaminer enn de normalt trenger.

Demografiske variabler. De demografiske bakgrunnsvariablene var kjønn, alder, studieår, nåværende utdanning, om de hadde tidligere utdanning. Det ble også stilt ett spørsmål om de som voksne hadde tatt vitaminpiller, antioksidanttilskudd, urter eller annet (som ginseng, gjørttabletter, leverekstrakt, mineralkapsler, m.m.) og ett spørsmål om de brukte de ulike kosttilskuddene nå (hvorfor?).
3.4 Pilottest

Etter at alle variabler og testledd var funnet, ble et førsteutkast til spørreskjemaet laget og pilottestet av fem masterstudenter i samfunnsernæring. De ga bl.a. tilbakemelding om at spørreskjemaet var for langt, at utsagn som handlet om samme tema burde samles, samt kommentarer til spesifikke spørsmål som var uklare eller vanskelig å gi noe klart svar på. På bakgrunn av tilbakemeldingen ble spørreskjemaet revidert, og lengden ble redusert fra 62 til 49 spørsmål/utsagn. De slettede spørsmålene handlet blant annet om holdninger til vitenskap og hva de la vekt på i valg av mat. I tillegg ble enkelte utsagn fra de ulike holdningskonstruktene fjernet for å korte ned spørreskjemaet.

3.5 Rekruttering av deltakere

Hensikten var i utgangspunktet å distribuere spørreskjemaet til helsefagstudenter og samfunnsernæringsstudenter ved Høgskolen i Oslo og Akershus, men for å øke sjansene for å få god respons, ble det sendt invitasjoner til andre institusjoner over hele landet. Inklusjonskriteriet var at studentene studerte ernæring/samfunnsernæring, fysioterapi eller sykepleie. Målet var å skaffe minst 200 respondenter, da dette ofte anbefales som et minimum ved faktoranalyser (Clausen, 2009; MacCallum, Widaman, Zhang & Hong, 1999). Selv om dette bare er en tommelfingerregel som ikke nødvendigvis gjelder alle undersøkelser, er det klart at studien ville bli bedre med henblikk på statistisk styrke og generaliserbarhet jo flere deltakere.

Ettersom undersøkelsen var anonym var det ikke mulig å finne ut forskjeller mellom de som svarte og de som ikke svarte. Det var heller ikke mulig å få informasjon fra alle institusjonene om hvor mange studenter de hadde per klasse, og følgelig ikke mulig å beregne svarprosent. I 2012 var det 13,129 registrerte sykepleierstudenter, 993 fysioterapistudenter, 82 samfunnsernæringsstudenter og 444 ernæringsstudenter i Norge. På grunn av studiens eksplorerende og pilotpregete natur, ble det ikke forsøkt å oppnå et tilfeldig utvalg. Utvalget kan heller sies å være et ”slumpmessig” utvalg, eller et bekvemmelighetsutvalg (Ringdal, 2007, s. 191)

3.6 Forskningsetiske hensyn

Respondentene ble informert om temaet for undersøkelsen og formålet med den, hvilken metode som skulle brukes, at deltakelsen var frivillig og anonym, at de hadde mulighet til å trekke seg fra studien når som helst uten at det ville få konsekvenser for dem,
og kontaktinformasjon til studieansvarlige (vedlegg C). Det var ikke mulig å koble respondentenes svar til deres e-postadresser.

Prosjektet var tilrådet iht. personopplysningsloven av Norsk samfunnsvitenskapelig datatjeneste (NSD). NSD anbefalte at førstegangskontakt med studentene ble opprettet av noen som hadde naturlig tilgang til personopplysninger/e-postadresser til utvalget. De ba videre om at det ble presisert overfor studentene at undersøkelsen skulle ”måle helsefagstudenter s grad av pseudovitenskapelige/ikke-vitenskapelige holdninger til mat og helse …”. Da jeg fryktet at en såpass eksplisitt beskrivelse av formålet ville kunne initiere svardirigerende tankegang hos målgruppen, være ugunstig for svarprosenten og føre til seleksjonsskjevhet, fikk jeg til slutt medhold i å heller si at undersøkelsen tok for seg ”hvilke holdninger helsefagstudenter har til en del påstander om mat og helse”.

Jeg tok høyde for at mange av holdningsutsagnene ville virke litt ”overraskende”, ufaglige og kanskje fornærmdende blant enkelte. Dette anså jeg imidlertid som relativt uproblematisk, etisk sett, siden respondentene som nevnt kunne avbryte utfyllingen av spørreskjemaet til enhver tid.

3.7 Validitet

Det er vanskelig å kvantifisere konstruktvaliditeten, men den kan anslås ved hjelp av faktoranalyse (se punkt 3.9 i dette kapittelet) (Ilstad, 1989).

Innholdsvaliditet. Med innholdsvaliditet (engelsk: content validity) menes hvor representative og relevante indikatorene i et spørreskjema er for det konstruktet man ønsker å måle, med andre ord hvor dekkende indikatorene er for konstruktet. Hellevik kaller dette "den definisjonmessige validiteten" (Hellevik, 2002, s. 186). Dette må vurderes kvalitativt, gjerne av eksperter innenfor feltet, eller som Wassertheil-Smoller sier det, med "en blanding av sunn fornuft og tekniske psykometriske egenskaper" (Wassertheil-Smoller, 2003, s. 164, min oversettelse) Jeg gjorde ingen undersøkelse blant andre eksperter, så jeg måtte vurdere dette ut ifra mitt eget perspektiv og a priori teori. Som tidligere nevnt ble PBFH-konstruktet
dannet deduktivt på bakgrunn av litteraturen om pseudovitenskap og (mis)oppfatninger om mat og helse som er klart i strid med allment akseptert kunnskap om ernæring.

Clark og Watson (1995) anbefaler at spørreundersøkelser inneholder testledd man tror er på grensen eller er urelatert til konstruktet man vil måle, ettersom psykometriske analyser uansett vil fjerne svake, urelaterte testledd. Analysene klarer derimot ikke å oppdage testledd som burde ha vært med, men som ikke er det: "(…) in creating the item pool, one always should err on the side of overinclusiveness" (ibid., s. 311).

Ifølge Hellevik vil det å slå sammen variabler til indekser styrke validiteten da sammenslåtte mål får med flere aspekter av det vi ønsker å måle enn enkeltindikatorer (Hellevik, 1999, s. 299; se også Ringdal, 2007, s. 85).

3.8 Reliabilitet

Reliabiliteten påvirkes av målefeil. Målefeil kan være systematiske og/eller tilfeldige. Systematiske målefeil innebærer at man måler noe annet enn det man hadde tenkt å måle. Tilfeldige målefeil kan skyldes personen som måles (respondenten) eller noe med selve spørreskjemaet, som for eksempel at respondenten misforstår spørsmalet eller at svarene blir registrert feil. Det sistnevnte kunne unngås i denne undersøkelsen, da spørreskjemaet ble
utfylt elektronisk og datasettet ble overført automatisk til statistikkprogrammet. Hvor opplagte eller motiverte respondentene var mens de fylte ut spørreskjemaet, er derimot en form for tilfeldig målefeil det ikke var mulighet å kontrollere for.

Det finnes flere måter å estimere grad av målefeil, og dermed reliabiliteten, på, avhengig av hva slags undersøkelse man gjør. Et mål på hvor stabile resultatene av en test er over tid er test-retest-metoden, hvor deltakerne tar samme test ved to tidspunkter, og en korrelasjonskoeffisient mellom resultatene blir utregnet (Ringdal, 2001). Et annet mål på reliabiliteten til en indeks er graden av intern konsistens, noe som refererer til hvorvidt de enkelte leddene i en samlevariabel er homogene, og dermed reflekterer et underliggende konstrukt. Intern konsistens måles som regel ved hjelp av Cronbachs alfa. Cronbachs alfa går fra 0 til 1, og høyere alfa indikerer bedre intern konsistens. En alfa på 0,70 eller mer anses som akseptabelt. Dette kan forstås som at 70 prosent av variansen i indeksen er "sann" varians, mens de resterende 30 prosent skyldes feilvarians som skyldes tilfeldigheter (Lie, 2010). Det er imidlertid viktig å merke seg at vil alflaverdien vil øke med antall indikatorer, ettersom sammenslåing av variabler svekker de tilfeldige målefeilene (ibid.). Alfaverdien kan også økes ved å fjerne indikatorer som har lav kovarians med andre indikatorer i indeksen, da disse vil trekke ned den generelle alfa (Field, 2009).

Den beste måten å lage reliable indekser på er å bruke mange indikatorer (de Vaus, 2002, s. 53). Å slå sammen flere indikatorer eller testledd til indekser vil ofte styrke reliabiliteten, ettersom de tilfeldige målefeilene vil bli jevnet ut når indikatorene slås sammen (Hellevik, 1999).

3.9 Statistiske analyser

De statistiske analysene ble utført med dataprogrammet SPSS versjon 19 (IBM, 2010). Rådataene fra spørreskjemaet ble eksportert automatisk ved hjelp av fil fra QuestBack.
Etter å ha blitt kjent med dataene, var første steg i databehandlingen å kode om variabler slik at de egnet seg til videre analyser. Noen verdier ble slått sammen, blant annet ble svarkategorien "Jeg har ingen kunnskap om dette" på holdningsutsagnene slått sammen med kategorien "Verken enig eller uenig", da jeg antok at begge svarene egentlig reflekterte ubesluttomhet eller ambivalens. Dette var også nødvendig for å kunne legge sammen variablene og regne ut samleskårer. For noen av holdningsutsagnene ble skalaen snudd, slik at høyere skår skulle betegne en mer positiv holdning til fenomenet, eller vice versa. For eksempel var et av holdningsutsagnene om alternativ behandling "Jeg tror de fleste alternative terapier ikke virker", altså negativt ladet. Ettersom jeg var ut etter å undersøke forekomsten av positive til alternativ behandling, måtte verdiene på svarkategoriene derfor snus, slik at de som var minst enig i denne påstanden ("I svært liten grad") skåret høyest.

En totalskår for hvert av holdningskonstruktene ble beregnet ved å summere svarene på de respektive holdningsutsagnene og dividere summen på antall holdningsutsagn. Hver totalskår strakk seg derfor fra 1 til 5.

Kunnskapsspørsmålene ble omkodet til dikotome variabler, slik at gale svar fikk verdien 0 og riktige svar fikk verdien 1. Poengene på hvert spørsmål ble så summert sammen til en total kunnskapskår fra 0 til 33.

Faktoranalyse. For å undersøke om et sett med variabler måler noe felles og underliggende, er faktoranalyse et egnet statistisk verktøy (Bjerkan, 2012). Faktoranalyse er derfor en sentral del av utvikling og valideringer av indekser eller skalaer, og har vært kalt "Dronningen" av analytiske metoder for spørreundersøkelser (Aarø, 2007, s. 159; Henson & Roberts, 2006). Ved faktoranalyse forsøker man å plassere korrelasjonene mellom variabler i en eller flere hypotetiske variabler kalt faktorer (Williams, 1992). Hensikten er å redusere og gruppere et stort antall observerte variabler (testledd) til færre, uobserverte faktorer. Faktorene representerer ulike kombinasjoner av variablene (Clausen, 2009, s. 28). Dersom
alle testleddene korrelerer med hverandre, tyder det på at man har én faktor, men dersom faktoranalysen finner flere faktorer, kan man danne flere underskalader. Man kan egentlig trekke ut like mange faktorer som antall variabler som inngår i analysen, men målet med faktoranalysen er å bevare færrest mulige faktorer som forklarer mest mulig varians i de observerte variablene (Henson & Roberts, 2006).

Det finnes to hovedtyper faktoranalyse: *eksplorerende* og *konfirmerende* faktoranalyse. Ved eksplorerende faktoranalyse forsøker man å generere hypoteser om hvor mange faktorer som beskriver fenomenet, mens konfirmerende faktoranalyser brukes for å teste hypoteser eller bekrefte tidligere teorier (Bjerkan, 2012).

I denne undersøkelsen ble det gjort semikonfirmerende *prinsipalkomponentanalyser* (PCA) for å trekke ut faktorer. De første (”prinsipale”) variablene som trekkes ut kan brukes til å gi et samlet bilde av dataene og til å forenkle de senere analysene. Mens faktoranalyse prøver å forklare en variabels felles varians med andre variabler (også kalt *kommunaliteter*), prøver PCA å forklare *all* varians til en variabel, både fellesvariansen, dens *unike varians* og generelle målefeil (Bjerkan, 2012; Clausen, 2009). Selv om PCA ofte regnes som en form for faktoranalyse (se Clausen, 2009), trekker PCA strengt talt ut *komponenter*, ikke faktorer. Noen mener at derfor at PCA ikke faktoranalyse i det hele tatt, men i praksis er forskjellene mellom PCA og andre metoder (for eksempel prinsipal faktoranalyse) som regel ubetydelige, særlig hvis man har med mange variabler å gjøre (Henson & Roberts, 2006). På grunn av de mange likhetene mellom faktor- og komponentanalyse vil jeg i denne oppgaven bruke ordene *komponenter* og *faktorer* om hverandre.

Faktorstrukturene ble først undersøkt ved hjelp av eksplorerende PCA med ortogonal, *varimax-rotasjon*. Hensikten med rotasjon er å gjøre faktorstrukturen og tolkningen av den enklere (Bjerkan, 2012). Varimax forsøker å maksimere variansen (derav navnet) ved å gjøre
høye faktorladninger4 høyere. For å bestemme hvor mange komponenter som skal trekkes ut, bør man ta hensyn til flere elementer, som komponentenes "eigenvalue" (egenverdi) og Cattells "skredplott" (engelsk: "scree plot"). Egenverdier angir hvor stor varians en faktor forklarer (Clausen, 2009). Kun komponenter med eigenvalue >1.0 ble trukket ut, selv om dette kriteriet alene ofte gir for mange faktorer (Henson & Roberts, 2006). Skredplottet gir en grafisk framstilling av egenverdiene for hver faktor eller komponent. Faktorene over "albuen" i grafen bidrar mest til forklaringen, og kan beholdes. Det finnes mange tolkninger av hvordan man bør velge faktorer ut ifra skredplottet, men man bør også vurdere hva som gir mest begrepsmessig mening (Aarø, 2007).

![Figur 1 Eksempel på et skredplott](image)

Komponenter med få ledd og lite åpenbar innbyrdes sammenheng ble lukket ut. Når antall komponenter var bestemt, ble det gjort en ny PCA som var forhåndsdefinert til å trekke ut det bestemte antallet komponenter. Variabler som ikke ladet over 0,3 på noen av komponentene ble utelatt fra modellen.

4Faktorladning = korrelasjonen mellom en faktor og en variabel (Field, 2009, s. 631).
Én forutsetning for å utføre faktoranalyse er at variablene som inngår korrelerer med hverandre (Aarø, 2007; Bjerkan, 2012). For å undersøke om dataene er egnet for faktoranalyse, ble to mål på korrelasjoner mellom variablene undersøkt: Kaiser-Meyer-Olkins mål på adekvat sampling (KMO) og Bartletts Test of Sphericity. KMO bør være over 0,6, og Bartletts test bør være signifikant ($p < 0,05$) for å gå videre med faktoranalysen.

Mange lærebøker i kvantitativ metode anbefaler en utvalgsstørrelse på minst 2-300 når man skal gjøre en faktoranalyse (Field, 2009). Andre har fokusert på forholdet mellom respondenter og antall variabler, men slike tommelfingerregler har i nyere tid blitt kalt meningsløse og misforståtte (DeWinter, Dodou, & Wieringa, 2009; McCallum et al., 1999). Ved høye faktorladninger (for eksempel over 0,6), få faktorer og mange variabler kan man gjøre reliable eksplorerende faktoranalyser selv med utvalg på mindre enn 50 deltakere (De Winter et al., 2009).

Etter at den (antatt) beste faktorløsningen var funnet, ble den nye indeksen reliabilitetstestet med Cronbachs alfa. Det ble også undersøkt hvorvidt fjerning av enkelte indikatorer i indeksen bidro til å øke den generelle reliabiliteten. Deretter ble en rekke Spearman's rangkorrelasjonstester utført med PBFH-indeksen og de uavhengige variablene - tro på paranormale fenomener, holdninger til alternativ behandling, tro på vitaminer, bruk av kosttilskudd, preferanser for "naturlighet", rasjonell/intuitiv tenkning, holdninger til kostholdsinformasjon, utdanning og studieår.

Multippel regresjonsanalyse. Siste del av den statistiske analysen besto av å utføre en standard og en hierarkisk multippel regresjonsanalyse med de uavhengige variablene som ble funnet å korrelere signifikant ($p < 0,05$) med PBFH-indeksen. Målet med regresjonsanalyse er for det første å predikere et fenomen på bakgrunn av uavhengige

5 Merk at signifikansbegrepet i denne oppgaven refererer til sannsynligheten for at det statistiske resultatet er oppnådd tilfeldig, og brukes ikke for å ville generalisere til den respektive populasjonen. "Statistisk signifikant" brukes derfor her for å si noe om "hvor sannsynlig utvalgsresultatet er, gitt at nullhypotesen … er sann" (Hellevik, 1999, s. 394).
variabler, dernest å utvikle modeller for hva som bidrar til å forsøke å forklare fenomenet.

Den hierarkiske regresjonsanalysen besto av tre trinn: I trinn 1, ble deltakernes bakgrunnsdata lagt inn, deretter kunnskap (trinn 2), og til slutt holdningsvariablene (trinn 3).
4. Resultater

4.1 Utvalg

Demografi. Utvalget hadde som forventet et klart flertall av kvinner (se Tabell 2). Medianalder var 24 år, men de mannlige studentene var signifikant eldre enn de kvinnelige ($p < 0,001$). Innenfor de enkelte studieretningene var 54,5, 87,5 og 85,2 prosent av hhv. fysioterapi-, samfunnsernærings- og sykepleiestudentene kvinner. Blant ernæringsstudentene var det kun kvinner som deltok.

Selvrapportert bruk av kosttilskudd er også oppgitt i Tabell 2. Som tabellen viser var forbruket av vitamintilskudd høyest blant samfunnsernæringsstudentene og lavest blant fysioterapistudentene. Bruken av antioksidanttilskudd var også høyest blant samfunnsernæringsstudentene.
4.2 Pseudovitenskapelige holdninger

Som nevnt i innledningen var undersøkelsens første forskningsspørsmål *I hvilken grad forekommer tro på pseudovitenskapelige helsepåstander blant helsefagstudenter?*

Variablene med pseudovitenskapelige holdningsutsagnene ble rekodet slik at høye verdier på skalaen 1-5 reflekterte større grad av enighet. Svaralternativet *"Jeg har ingen kunnskap om dette"* ble rekodet og slått sammen med *"Verken i liten eller stor grad"*, da jeg tolket begge som ubesluttsomhet mer enn uvitenhet.
En prinsipal komponentanalyse av alle indikatorvariablene ble utført etter Kaisers kriterium. Denne viste at hele 12 komponenter hadde en egenverdi ("eigenvalue") ≥1, og disse forklarte til sammen 69 prosent av variansen i verdiene. Det var ikke mulig å tolke hva alle disse 12 komponentene indikerte. Skred-plottet viste at kun én eller to komponenter var nødvendig for å forklare korrelasjonene mellom variablene substansielt. En ny PCA ble derfor utført, hvor det ble definert at det skulle trekkes ut én faktor, og at alle faktorladninger < 0,30 skulle utelates.

Prinsipalkomponentanalysen med én faktor ga en KMO-verdi på 0,70 og en signifikant Bartlett’s Test of Sphericity (p = 0,001). En KMO over 0,7 tyder på at variablene egner seg temmelig godt for faktoranalyse (Aarø, 2007). Komponentladningene for de ulike variablene er vist i Tabell 3.

Tabell 3 Faktoranalyse av PBFH-konstruktet

<table>
<thead>
<tr>
<th>Mange sykdommer skyldes en ubalanse mellom energistrømninger i kroppen.</th>
<th>Faktorladninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>Å spise mat med mye klorofyll er viktig for å gi oksygen til blodet</td>
<td>0,76</td>
</tr>
<tr>
<td>Rå mat renser opp nervesystemet.</td>
<td>0,69</td>
</tr>
<tr>
<td>Kropps kjemi bestemmes av blodtypen. Mange matvarer bør derfor unngås av personer med en bestemt blodtype.</td>
<td>0,66</td>
</tr>
<tr>
<td>Alle organer i kroppen kan påvirkes ved å massere bestemte punkter på foten.</td>
<td>0,65</td>
</tr>
<tr>
<td>Man kan gå ned betydelig i vekt ved hjelp av massasje.</td>
<td>0,63</td>
</tr>
<tr>
<td>Vann renser kroppen for avfallsstoffer og smører nervecellene.</td>
<td>0,61</td>
</tr>
<tr>
<td>Man bør bare spise én type stivelse og én type protein på samme tid.</td>
<td>0,59</td>
</tr>
<tr>
<td>Hvis vi ikke renser kroppen, vil skadelige avfallsstoffer bli værende igjen i den.</td>
<td>0,59</td>
</tr>
<tr>
<td>Du kan oppdage enhver sykdom en person har ved å undersøke irisen (regnbuehinnen)</td>
<td>0,58</td>
</tr>
</tbody>
</table>
Tabell 3 forts.

Betennelser kan kureres ved å legge edle krystaller på det syke området.	0,57
Tretthet er et symptom på en overdrevent sur kropp.	0,55
Siden kroppen består av 70 prosent vann, bør vi ha et kosthold som har et vanninhold på omtrent 70 prosent.	0,54
Syreholdig mat gir for mye syre i magesaften.	0,53
Man kan gå ned betydelig i vekt ved bare å svette mye.	0,52
Mange sykdommer og plager skyldes høy surhetsgrad (lav pH) i kroppsvæsker og -vev.	0,52
Hvis du svelger tyggegummi, kan den ligge igjen i magen i 7 år.	0,50
Frukt må spises på tom mage for at kroppen skal kunne fordøye den ordentlig.	0,48
Å drikke kaldt vann etter maten hemmer fordøyelsen.	0,47
Den fysiske og mentale helsen opprettholdes av en underliggende energi eller livskraft.	0,46
Melk skaper et surt miljø i kroppen og trekker derfor kalk (kalsium) ut av skjelettet.	0,46
Animalsk blod gjør maten uren.	0,45
Feil kosthold får maten til å råtne i kroppen.	0,45
Smerte forbundet med revmatisme kan reduseres hvis du bruker magnetarmbånd.	0,38
Man bør drikke minst 8 glass vann om dagen.	0,38
Vann med bobler (kullsyre) er forsurende og bryter ned skjelettet. Man bør derfor bare drikke rent vann.	0,38
DNA har ingen innflytelse på hvilken sykdom en person kan rammes av i løpet av livet.	-0,37
Ingen kan helbrede noen ved å legge hendene på den syke. (snudd)	0,36
Det er mulig å bestemme kjønnent til et foster ved å svinge en ring i en tråd over magen til moren.	0,35
Røde drikker gir mer hemoglobin	0,35
Folk som vil ned i vekt bør spise mer fett, og mindre sukker og stivelse, enn de vanligvis spiser.	0,35
Melk danner slim i halsen.	0,32
Å spise om kvelden er fetende.	0,32
Jeg ville ikke ha spist mat som hadde vært i kontakt med smult, selv om smulten hadde vært fjernet fullstendig.	0,32

PBFH = Pseudoscientific Beliefs about Food and Health
Åtte utsagn hadde faktorladninger under 0,3, og ble derfor utelatt fra konstruktet. Det ble deretter gjort reliabilitetsanalyse med de gjenværende 35 testleddene. Denne ga en Cronbachs alfa på 0,91 for konstruktet *Pseudoscientific Beliefs about Food and Health* (PBFH), noe som tyder på at den interne konsistensen er bra.

Gjennomsnittsscore for alle variablene i det endelige konstruktet er vist i Tabell 4.

Tabell 4 PBFH-konstruktets gjennomsnitt og standardavvik

<table>
<thead>
<tr>
<th>Holdningsutsagn</th>
<th>Gjennomsnitt (SD)</th>
<th>Andel enige (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Man bør drikke minst 8 glass vann om dagen</td>
<td>3,96 (1,04)</td>
<td>70</td>
</tr>
<tr>
<td>2. Melk danner slim i halsen</td>
<td>3,26 (1,19)</td>
<td>45</td>
</tr>
<tr>
<td>3. Vann renser kroppen for avfallsstoffer og smører nervecellene</td>
<td>3,02 (1,33)</td>
<td>43</td>
</tr>
<tr>
<td>4. Ingen kan helbrede noen ved å legge hendene på den syke (snudd)</td>
<td>2,96 (1,28)</td>
<td>31,7</td>
</tr>
<tr>
<td>5. Alle organer i kroppen kan påvirkes ved å massere bestemte punkter på foten</td>
<td>2,88 (1,31)</td>
<td>33</td>
</tr>
<tr>
<td>6. Mange sykdommer skyldes en ubalanse mellom energistrømminger i kroppen.</td>
<td>2,62 (1,25)</td>
<td>22,8</td>
</tr>
<tr>
<td>7. Å spise om kvelden er fetende</td>
<td>2,62 (1,25)</td>
<td>30</td>
</tr>
<tr>
<td>8. Den fysiske og mentale helsen opprettholdes av en underliggende energi eller livskraft</td>
<td>2,59 (1,19)</td>
<td>22</td>
</tr>
<tr>
<td>9. Folk som vil ned i vekt bør spise mer fett og mindre sukker og stivelse, enn de vanligvis spiser</td>
<td>2,57 (1,24)</td>
<td>20,8</td>
</tr>
<tr>
<td>10. Jeg ville ikke ha spist mat som hadde vært i kontakt med smult, selv om smulthen hadde vært fjernet fullstendig</td>
<td>2,55 (1,37)</td>
<td>19</td>
</tr>
<tr>
<td>11. DNA har ingen innflytelse på hvilken sykdom en person kan rammes av i løpet av livet</td>
<td>1,84 (1,34)</td>
<td>15</td>
</tr>
<tr>
<td>12. Syreholdig mat gir for mye syre i magesaften</td>
<td>2,53 (1,07)</td>
<td>14</td>
</tr>
<tr>
<td>13. Mange sykdommer og plager skyldes høy surhetsgrad (lav pH) i kroppsvesker og –vev</td>
<td>2,53 (1,05)</td>
<td>11</td>
</tr>
</tbody>
</table>

Tabell 4 forts.

14. Smerte forbundet med revmatisme kan reduseres hvis du bruker magnetarmbånd 2,42 (0,98) 5
15. Hvis vi ikke rensen kroppen, vil skadelige avfallsstoffer bli værende igjen i den 2,29 (1,23) 18,8
17. Hvis du svelger tyggegummi, kan den ligge igjen i magen i 7 år. 2,18 (1,19) 11
18. Rå mat renser opp nervesystemet 2,08 (1,05) 5
19. Vann med bobler (kullsyre) er forsurende og bryter ned skjelettet. Man bør derfor bare drikke rent vann. 2,01 (1,11) 8,1
20. Man kan gå ned betydelig i vekt ved bare å svette mye 1,98 (1,02) 7
21. Tretthet er et symptom på en overdrevent sur kropp 1,97 (1,06) 7
22. Siden kroppen består av 70 prosent vann, bør vi ha et kosthold som har et vanninnhold på omtrent 70 prosent 1,88 (1,02) 4
23. Å spise mat med mye klorofyll er viktig for å gi oksygen til blodet 1,85 (1,03) 3
24. Betennelser kan kureres ved å legge edle krystaller på det syke området 1,84 (0,98) 2
25. Feil kosthold får maten til å råtne i kroppen 1,82 (1,12) 8,9
26. Du kan oppdage enhver sykdom en person har ved å undersøke irisen (regnbuehinnen) 1,74 (0,97) 4
27. Å drikke kaldt vann etter maten hemmer fordøyelsen 1,73 (1,00) 5
28. Man bør bare spise én type stivelse og én type protein på samme tid 1,63 (0,89) 1
29. Animalsk blod gjør maten uren 1,57 (0,98) 5
30. Det er mulig å bestemme kjønn til et foster ved å svinge en ring i en tråd over magen til moren 1,54 (0,91) 1
31. Man kan gå ned betydelig i vekt ved hjelp av massasje 1,53 (0,79) 2
32. Når vi bearbeider maten blir enzymene i maten ødelagt. Man bør derfor ta enzymtilskudd som hjelper deg med å fordøye måltidene 1,52 (0,95) 3
33. Melk skaper et surf miljø i kroppen og trekker derfor 1,49 (0,87) 3
ut kalk (kalium) ut av skjelettet

34. Frukt må spises på tom mage for at kroppen skal kunne fordybe den ordentlig 1,41 (0,78) 1

35. Røde drikker gir mer hemoglobin 1,26 (0,61) 0

Gjennomsnittlig totalscore 2,16 (0,54)

Cronbachs alfa = 0,91

Skala fra 1-5, 1 = svært uenig, 5 = svært enig.

a PBFH = Pseudoscientific Beliefs about Food and Health

b Andelene som svarte "ganske" eller "svært enig" ble slått sammen.

Figur 2 Fordeling av skårene på PBFH

Figur 2 gir en grafisk beskrivelse av studentenes skår på PBFH. Normalfordelingskurven viser at fordelingen av skårene er noe skjeve og klynger seg ved de lavere verdiene. Skåren hadde en skjevheitsverdi på 0,24 (SE 0,25) og en kurtose på -0,64 (SE 0,50). Kolmogorov-Smirnovs Test of Normality var ikke signifikant, noe som tyder på at skårene var rimelig normalfordelte.
Oppsummering av forskningsspørsmål 1. Gjennomsnittlig totalskår på PBFH-konstruktet var 2,16 (SD = 0,54), på en skala fra 1 til 5. Dette tyder på at mange studenter var generelt lite enige i de pseudovitenskapelige påstandene om mat og helse som inngikk i konstruktet PBFH.

Kunnskap om ernæring og helse. Som nevnt i innledningskapittelet var neste forskningsspørsmålet å undersøke sammenhenger mellom holdninger til pseudovitenskapelige påstander, utdanning og kunnskap om ernæring og helse.

Kunnskapstesten besto av 33 spørsmål. Gjennomsnittlig antall riktige svar var 26,8 (SD = 2,96), eller 81,2 prosent. Det viste seg imidlertid at bare 50 studenter svarte på alle kunnskapsspørsmålene. Spørsmålet ”Hvor mange kcal er det i 1 gram protein, fett og karbohydrater?” ble besvart av bare 56 studenter, og av bare 23 (37,8 prosent) av sykepleierstudentene. Da de som ikke svarte på kunnskapsspørsmålene ble antatt å ikke vite riktig svar, besluttet jeg å kode om alle ikke-svar som ”Galt”. Den nye gjennomsnittsscoren ble noe lavere: 24,2 (SD = 5,62), eller 73,3 prosent riktige svar. Tre deltakere hadde høyest antall riktige svar, 32.

Enveis variansanalyse (ANOVA) ble utført for å undersøke forskjeller i gjennomsnittsskår mellom studiegruppene. Det var en signifikant forskjell mellom de fire gruppene \((F(3, 97) = 10,02, \ p < 0,001)\). Bonferronis post-hoc-test fant at ernærings- og samfunnsernæringsstudentene \((M = 27,1 \ SD = 6,8 \ og \ M = 28,7, \ SD = 2,4)\) skåret signifikant høyere enn sykepleierstudentene \((M = 22,5, \ SD = 4,5)\) \((p < 0,01)\).

Tabell 5 viser andelen riktige svar på hvert enkelt spørsmål. Se Vedlegg A for fullstendig spørreskjema med svaralternativer.
Tabell 5 Andel riktige svar på kunnskapstesten.

<table>
<thead>
<tr>
<th>Spørsmål</th>
<th>% riktig svar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hva er den viktigste funksjonen til røde blodlegemer?</td>
<td>98</td>
</tr>
<tr>
<td>Hva gjør hjertet?</td>
<td>97</td>
</tr>
<tr>
<td>Maten du spiser gir deg energi. Hvor i kroppen blir energien frigjort?</td>
<td>80,2</td>
</tr>
<tr>
<td>Hva skjer i kroppen når du løper og hjertet slår raskere?</td>
<td>61,4</td>
</tr>
<tr>
<td>Hvilke næringsstoffer trenger vi ofte?</td>
<td>44,6</td>
</tr>
<tr>
<td>Det er viktig for helsa å spise bladgrønnsaker. Dette er fordi disse grønnsakene inneholder mye av…</td>
<td>72,3</td>
</tr>
<tr>
<td>Hva bør ikke være en del av maten?</td>
<td>38,6</td>
</tr>
<tr>
<td>Kunnskap om anbefalinger d</td>
<td>50,5</td>
</tr>
<tr>
<td>Hvor mange kalorier er det i 1 gram av hhv. protein, fett og karbohydrater?</td>
<td>42,6</td>
</tr>
<tr>
<td>Hva tror du har mest kalorier, smør eller margarin?</td>
<td>24,8</td>
</tr>
<tr>
<td>Flerumettet fett finner vi hovedsakelig i…</td>
<td>77,2</td>
</tr>
<tr>
<td>Om en person ønsker å redusere mengden fett i kostholdet, hvilken av disse matvarene ville ha vært det beste valget for ham/henne?</td>
<td>71,3</td>
</tr>
<tr>
<td>Hvor mange av aminosyrene er essensielle?</td>
<td>59,4</td>
</tr>
<tr>
<td>Hvilken type protein har høyest kvalitet?</td>
<td>61,4</td>
</tr>
<tr>
<td>Inneholder disse matvarene karbohydrater?</td>
<td></td>
</tr>
<tr>
<td>Ost</td>
<td>54,5</td>
</tr>
<tr>
<td>Pasta</td>
<td>95</td>
</tr>
<tr>
<td>Smør</td>
<td>67,3</td>
</tr>
<tr>
<td>Ris</td>
<td>94,1</td>
</tr>
<tr>
<td>Sukker</td>
<td>93,1</td>
</tr>
<tr>
<td>Grøt</td>
<td>91,1</td>
</tr>
<tr>
<td>Har disse matvarene lite fett?</td>
<td></td>
</tr>
<tr>
<td>Pasta</td>
<td>87,1</td>
</tr>
<tr>
<td>Ris</td>
<td>91,1</td>
</tr>
<tr>
<td>Brød</td>
<td>88,1</td>
</tr>
<tr>
<td>Nøtter</td>
<td>85,1</td>
</tr>
<tr>
<td>Margarin</td>
<td>91,1</td>
</tr>
<tr>
<td>Olivenolje</td>
<td>83,2</td>
</tr>
<tr>
<td>Er disse matvarene en kilde til fiber?</td>
<td></td>
</tr>
<tr>
<td>Biff</td>
<td>80,2</td>
</tr>
<tr>
<td>Bakte bønner</td>
<td>71,3</td>
</tr>
<tr>
<td>Eplejuice</td>
<td>69,3</td>
</tr>
</tbody>
</table>
Tabell 5 forts.

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brød</td>
<td>91,1</td>
</tr>
<tr>
<td>Mager fisk</td>
<td>74,3</td>
</tr>
<tr>
<td>Appelsiner</td>
<td>50,5</td>
</tr>
<tr>
<td>Hvorfor anbefales kvinner å ta folsyretilskudd før og under graviditeten?</td>
<td>79,2</td>
</tr>
</tbody>
</table>

Slått sammen av spørsmålene ”Hvilken type fett bør folk flest redusere bruken av?” og ”Hva ligger i begrepet ’5 om dagen’?”

De to spørsmålene med lavest andel riktige svar var ”*Hva bør ikke være i maten?”* og ”*Hva tror du har mest kalorier, smør eller margarin?”*. På førstnevnte spørsmål svarte 57,4 prosent gener (riktig svar er klor). Flertallet (45,5 prosent) svarte *smør* på sistnevnte spørsmål (riktig svar er like mye).

Studentenes holdninger til ulike kilder til kostholdsinformasjon er vist i Tabell 6. Omtrent 20 prosent stolte på kostholdsråd fra alternativ medisin, men 63 prosent mente deres kosthold ble påvirket av informasjon fra vitenskapelige kilder. Svært få hadde tiltro til kostholdsinformasjonen i mediene.
Tabell 6 Holdninger til kilder til kostholdsinformasjon, gjennomsnitt og standardavvik.

<table>
<thead>
<tr>
<th>Holdning</th>
<th>Gjennomsnitt (SD)</th>
<th>Andel enige, %a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeg lar meg påvirke av kostholdsråd jeg leser om i aviser, ukeblader og lignende</td>
<td>2,28 (1,08)</td>
<td>14</td>
</tr>
<tr>
<td>Jeg har tiltro til at metoder innen alternativ medisin (f.eks. helsekost) gir meg troverdige kostholdsråd</td>
<td>2,49 (1,20)</td>
<td>21</td>
</tr>
<tr>
<td>Jeg synes det er vanskelig å skille vitenskapelig kostholdsinformasjon fra ikke-vitenskapelig kostholdsinformasjon</td>
<td>2,56 (1,27)</td>
<td>25</td>
</tr>
<tr>
<td>Jeg har tiltro til at medias presentasjon av nye vitenskapelig funn omkring sunt kosthold er riktig</td>
<td>1,79 (0,88)</td>
<td>4</td>
</tr>
<tr>
<td>Jeg baserer mitt kosthold på informasjon jeg får fra vitenskapelig anerkjent faglitteratur (f.eks. fagfellevurderte tidsskrifter, Helsedirektoratet, o.l.)</td>
<td>3,77 (1,14)</td>
<td>63</td>
</tr>
</tbody>
</table>

*aAndelen som svarte "ganske enig" eller "svært enig" ble slått sammen.

Korrelasjoner mellom pseudovitenskapelige holdninger, kunnskap og utdanning.

Da variabelen utdanning (ernæring, fysioterapi, samfunnsnærings og sykepleie) var målt på nominalnivå, ble den kodet om til fire "dummyvariabler", dvs. dikotome variabler med verdiene 0 eller 1. Variabelen Sykepleiestudent sammenlikner sykepleiestudenter med alle andre studenter, variabelen Samfunnsnæringsstudent sammenlikner samfunnsnæringsstudenter med alle andre studenter, osv.

Korrelasjonskoeffisientene mellom pseudovitenskapelige holdninger, kunnskap, utdanning, bruk av kosttillskudd og holdninger til informasjonskilder er vist i Tabell 7.
Tabell 7 Korrelasjoner mellom PBFH-konstruktet og bakgrunnsvariablene

<table>
<thead>
<tr>
<th></th>
<th>PBFH</th>
<th>Total kunnskapsskår</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. PBFH</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Total kunnskapsskår</td>
<td>-0,28**</td>
<td>1</td>
</tr>
<tr>
<td>3. Sykepleierstudent(^a)</td>
<td>0,27**</td>
<td>-0,53**</td>
</tr>
<tr>
<td>4. Tar antiodsanttilskudd(^a)</td>
<td>0,44**</td>
<td>-0,03</td>
</tr>
<tr>
<td>5. Har tiltro til kostholdsråd fra alternative behandlere og helsekost</td>
<td>0,67**</td>
<td>-0,08</td>
</tr>
<tr>
<td>6. Synes det er vanskelig å skille vitenskapelig kostholdsinformasjon fra ikke-vitenskapelig</td>
<td>0,35**</td>
<td>-0,21*</td>
</tr>
</tbody>
</table>

Kun variabler som korrelerte signifikant med PBFH er vist i tabellen.

\(^{**} p < 0.01.

\(^{a}\) Ja = 1, nei = 0

Pseudovitenskapelige holdninger korrelerte svakt, men signifikant negativt med den totale kunnskapsskåren, svakt positivt med det å være sykepleiestudent, middels positivt med det å ta antiodsanttilskudd og å synes at det er vanskelig å skille mellom vitenskapelig og ikke-vitenskapelig kostholdsinformasjon, og sterkt positivt med tiltro til kostholdsråd fra alternative behandlere og helsekost. Total kunnskapsskår korrelerte videre signifikant positivt med det å være ernærings- eller samfunnsernæringsstudent, og sterkt signifikant negativt med det å være sykepleiestudent og det å synes at det er vanskelig å skille mellom vitenskapelig og ikke-vitenskapelig kostholdsinformasjon.

Oppsummering av forskningsspørsmå 2. Resultatene fra kunnskapstesten fant at i snitt 24,2 av spørsmålene ble besvart korrekt. Dette er godt over middels, men noen misoppfatninger pekte seg ut, eksempelvis om gener i maten. Pseudovitenskapelige holdninger til mat og helse korrelerte signifikant negativt med kunnskap og signifikant positivt med det å være sykepleiestudent og å ta antiodsanttilskudd.
Det tredje forskningsspørsmålet var om pseudovitenskapelige holdninger også korrelerte med tro på alternativ behandling, paranormale fenomener, tenkemåter, tro på vitaminer, og preferanser for "naturlighet".

Holdninger til alternativ behandling. En eksplorerende prinsipal komponentanalyse fant at én komponent hadde en egenverdi >1, og at denne forklarte 55,4 prosent av variansen i variablene. En påfølgende reliabilitetstest fant at holdninger til alternativ behandling-indeksen hadde en god Cronbachs alfa på 0,89. Flere av variablene ble snudd, slik at høyere totalskår reflekterer en mer positiv holdning til alternativ behandling. Gjennomsnitsskåren blant studentene var 3,02, med et spenn fra 1 til 4,67. Studentene var minst enig i utsagnene "Jeg vil anbefale alternativ medisin til mine venner dersom de blir syke" (52,5 prosent uenig) og "Jeg stoler på de fleste alternative terapeuter" (57,4 prosent uenig) (se Tabell 8).

Tabell 8 Holdninger til alternativ behandling, gjennomsnitt og standardavvik

<table>
<thead>
<tr>
<th>Holdning</th>
<th>Gjennomsnitt (SD)</th>
<th>Andel enige (%)<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Alternative terapier bruker ideer og metoder som konvensjonell medisin kan dra nytte av.</td>
<td>3,66 (0,90)</td>
<td>61,4</td>
</tr>
<tr>
<td>2. Jeg ville aldri bruke terapier fra en alternativ behandler (snudd).</td>
<td>3,55 (1,11)</td>
<td>53</td>
</tr>
<tr>
<td>3. De fleste alternative terapier stimulerer kroppens naturlige terapeutiske krefter.</td>
<td>3,20 (1,04)</td>
<td>37,6</td>
</tr>
<tr>
<td>4. Behandlinger som ikke er testet på en vitenskapelig anerkjent måte, bør forkastes (snudd).</td>
<td>3,18 (1,27)</td>
<td>26,8</td>
</tr>
<tr>
<td>5. Jeg mener de fleste alternative behandle er kvakksalvere (snudd).</td>
<td>3,13 (1,14)</td>
<td>20,8</td>
</tr>
<tr>
<td>6. Jeg tror de fleste alternative terapier ikke virker (snudd).</td>
<td>3,03 (1,19)</td>
<td>32</td>
</tr>
<tr>
<td>7. Effektene av alternative behandlinger skyldes vanligvis en placeboeffekt (snudd).</td>
<td>2,63 (1,04)</td>
<td>41,5</td>
</tr>
<tr>
<td>8. Jeg vil anbefale alternativ medisin til mine venner dersom de blir syke.</td>
<td>2,55 (1,25)</td>
<td>21,8</td>
</tr>
</tbody>
</table>
Tabell 8 forts.

9. Jeg stoler på de fleste alternative terapeuter. 2,24 (1,02) 8,9
Total 3,02 (0,82)
Cronbachs alfa = 0,89

\(^a\) Andel som svarte ”ganske” eller ”svært enig”.

Tro på paranormale fenomener. Gjennomsnittskår på de enkelte utsagnene om paranormale fenomener, samt for hele konstruktet, er vist i Tabell 9 Konstruktet ble reliabilitetstestet for intern konsistens, og oppnådde en Cronbachs alfa-verdi på 0,89.

Tabell 9 Tro på paranormale fenomener, gjennomsnitt og standardavvik.

<table>
<thead>
<tr>
<th>Holdningsutsagn</th>
<th>Gjennomsnitt (SD)(^a)</th>
<th>Andel enige (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Astrologi er en presis måte å forutsi fremtiden på.</td>
<td>1.56 (0.89)</td>
<td>3</td>
</tr>
<tr>
<td>2. Det finnes klarsynte som kan «se» hva som skjer et annet sted.</td>
<td>2.12 (1.10)</td>
<td>13</td>
</tr>
<tr>
<td>3. Horoskopet forteller nøyaktig en persons fremtid.</td>
<td>1.29 (0.64)</td>
<td>8</td>
</tr>
<tr>
<td>4. Noen mennesker har en uforklarlig evne til å forutsi fremtiden.</td>
<td>2.35 (1.16)</td>
<td>18</td>
</tr>
<tr>
<td>5. Tarotkort avslører de skjulte sammenhengene i kosmos.</td>
<td>1.52 (0.81)</td>
<td>18</td>
</tr>
<tr>
<td>6. Krystaller kan kurerere sykdommer.</td>
<td>1.68 (0.93)</td>
<td>2</td>
</tr>
<tr>
<td>7. Jeg kan føle intuitivt på meg når noe viktig er på vei til å skje.</td>
<td>1.97 (1.05)</td>
<td>31</td>
</tr>
<tr>
<td>8. Folks skjebne avhenger av planetene.</td>
<td>1.50 (0.86)</td>
<td>3</td>
</tr>
<tr>
<td>9. Planter har sjel.</td>
<td>1.66 (0.92)</td>
<td>3</td>
</tr>
<tr>
<td>10. Alt levende er omgitt av en aura.</td>
<td>2.25 (1.20)</td>
<td>14</td>
</tr>
<tr>
<td>Totalt</td>
<td>1,79 (0,69)</td>
<td></td>
</tr>
</tbody>
</table>

Cronbachs alfa = 0,89

Tenkemåte. Alle 31 holdningsutsagn fra REI ble undersøkt med en prinsipalkomponentanalyse med Varimax-rotasjon. To meningsfulle komponenter som til sammen forklarte 29 prosent av variansen ble trukket ut (Tabell 10 viser den roterte faktorløsningen). En undersøkelse av de enkelte variablene i de to komponentene avdekket at
første komponent handlet om preferanse for tenkning (eksempelvis "Jeg vil heller gjøre noe som krever lite tenkning enn noe som helt sikkert vil utfordre mine tenkeevner", "Jeg foretrekker heller komplekse enn enkle problemer" og "Jeg prøver å forutse og unngå situasjoner hvor det er stor sjanse for at jeg vil måtte tenke dypt om noe"), mens den andre omhandlet tiltro til intuisjon (eksempelvis "Mine førsteinntrykk av folk er nesten alltid rett", "Jeg støler på mine første følelser om folk", "Jeg er en svært intuitiv person", osv.). Disse komponentene samsvarer med de to underskalaene i REI (Epstein et al., 1996): Need for Cognition (NFC) og Faith in Intuition (FI). Faktorladningene på de to komponentene er vist i Tabell 10. Variablene som ikke ladet på noen av de faktorene, ble utelatt. Cronbachs alfa for de to nye konstruktene var 0,81 (NFC) og 0,82 (FI).

Tabell 10 Faktoranalyse av holdningsutsagnene fra REI

<table>
<thead>
<tr>
<th>Komponent</th>
<th>1</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeg vil heller gjøre noe som krever lite tenkning enn noe som helt sikkert vil utfordre mine tenkeevner.</td>
<td>0,75</td>
<td></td>
</tr>
<tr>
<td>Jeg foretrekker heller komplekse enn enkle problemer. (snudd)</td>
<td>0,47</td>
<td></td>
</tr>
<tr>
<td>Jeg prøver å forutse og unngå situasjoner hvor det er stor sjanse for at jeg vil måtte tenke dypt om noe.</td>
<td>0,59</td>
<td></td>
</tr>
<tr>
<td>Jeg synes det er lite tilfredsstillende å tenke hardt og lenge (snudd)</td>
<td></td>
<td>0,56</td>
</tr>
<tr>
<td>Tenkning er ikke det jeg forbinder med moro</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td>Det å tenke abstrakt er ikke noe for meg</td>
<td>0,69</td>
<td></td>
</tr>
<tr>
<td>Jeg foretrekker at livet er fylt med gåter jeg må løse. (snudd)</td>
<td>0,53</td>
<td></td>
</tr>
<tr>
<td>Å bare forstå svaret fremfor å forstå årsakene til svaret på et problem, er nok for meg</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>Jeg resonnerer ikke godt under press.</td>
<td>0,38</td>
<td></td>
</tr>
<tr>
<td>Tanken på måtte tenke mey for å nå toppen, appellerer ikke til meg.</td>
<td>0,58</td>
<td></td>
</tr>
<tr>
<td>Å lære nye måter å tenke på, engasjerer meg ikke veldig mey</td>
<td>0,54</td>
<td></td>
</tr>
<tr>
<td>Jeg ville foretrekke en oppgave som er intellektuell, vanskelig og viktig mer enn en som er litt viktig, men som ikke krever så mey tenkning. (snudd)</td>
<td>0,39</td>
<td></td>
</tr>
</tbody>
</table>
Tabell 10, forts.
Jeg foretrekker generelt å akseptere ting som de er fremfor å stille spørsmål 0,59 ved dem
Jeg har vanskelig for å tenke i nye og ukjente situasjoner 0,57
Jeg føler mer lettelse enn tilfredsstillelse etter å ha fullført en oppgave som krever mye mentalt arbeid.
Mine førsteinntrykk av folk er nesten alltid rett. 0,69
Jeg stoler på mine første følelser om folk. 0,76
Når det kommer til det å stole på folk, kan jeg som regel stole på «magefølelsen»
Jeg tror på det å stole på intuisjonen 0,70
Jeg kan som regel føle når en person har rett eller feil, selv om jeg ikke kan forklare hvorfor.
Jeg er en svært intuitiv person. 0,70
Jeg kan vanligvis merke med en gang når en person lyver. 0,60
Jeg danner raskt inntrykk av folk. 0,52
Jeg tror jeg kan bedømme karakter ganske godt ut ifra en persons utseende. 0,44

Preferanse for naturlighet. For å undersøke indikatorene for preferanser for naturlighet, ble det først utført nok en eksplorerende faktoranalyse. Det ble trukket ut én faktor med en ”eigenvalue” på 2,96, og denne forklarte 49,3 prosent av variansen i konstruktet (se Tabell 11). Gjennomsnittlig skår på konstruktet var 3,38. Utsagnet ”Mye av maten er nå så bearbeidet og raffinert at den har mistet sin helsemessige verdi” hadde høyest andel enige (64,4 prosent).
Tabell 11 Preferanser for "naturlighet".

<table>
<thead>
<tr>
<th></th>
<th>Gjennomsnitt (SD)</th>
<th>Andel enige (%)</th>
<th>Faktorladninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Kjemikalier i maten fjerner mye av matens helsemessige verdi.</td>
<td>3,54 (1,25)</td>
<td>57</td>
<td>0,79</td>
</tr>
<tr>
<td>2. Menneskeskapte vitaminer er like bra som naturlige vitaminer (snudd).</td>
<td>3,16 (1,12)</td>
<td>29</td>
<td>0,48</td>
</tr>
<tr>
<td>3. Mye av maten er nå så bearbeidet og raffinert at den har mistet sin helsemessige verdi.</td>
<td>3,84 (1,09)</td>
<td>64,4</td>
<td>0,75</td>
</tr>
<tr>
<td>4. Sprøytemidler gjør maten helsefarlig, selv om de blir brukt forsiktig og kontrollert.</td>
<td>3,11 (1,15)</td>
<td>38,6</td>
<td>0,77</td>
</tr>
<tr>
<td>5. Mange matvarer taper mye av næringsverdien fordi de blir fraktet langt og lagret lenge.</td>
<td>3,57 (1,24)</td>
<td>60,4</td>
<td>0,74</td>
</tr>
<tr>
<td>6. Mat dyrket med kunstgjødsel er like sunn som mat dyrket med naturlig gjødsel (snudd).</td>
<td>3,14 (1,24)</td>
<td>30,8</td>
<td>0,62</td>
</tr>
<tr>
<td>Total</td>
<td>3,38 (1,25)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Cronbachs alfa = 0,79

Tro på vitaminer. En prinsipalkomponentanalyse fant at alle indikatorvariablene for konstruktet *Tro på vitaminer* utenom én ladet på én komponent (KMO = 0,82, Bartletts test = \(p < 0,001 \)). Den ene komponenten forklarte 41 prosent av variansen. De 11 variablene er vist i Tabell 12, samt gjennomsnittskår, andel enige (i stor eller svært stor grad) og faktorladningene. Indeksen hadde en Cronbachs alfa på 0,84. Flertallet var enige i at vitamintilskudd kan bidra til å gjøre en generelt sunnere (70,3 prosent), bidra til å unngå å bli
syk (70,3 prosent), holde seg frisk under en diett (65,3 prosent) og at det kan gi mer energi (65,3 prosent) og forebygge forkjølelse (63,4 prosent).

Tabell 12 ”Tro på vitaminer”

<table>
<thead>
<tr>
<th>Faktor</th>
<th>Gjennomsnitt (SD)</th>
<th>Andel enige (%)</th>
<th>Faktorladninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Mer energi</td>
<td>3,62 (1,24)</td>
<td>65,3</td>
<td>0,77</td>
</tr>
<tr>
<td>2. Forebygge forkjølelse</td>
<td>3,55 (1,22)</td>
<td>63,4</td>
<td>0,72</td>
</tr>
<tr>
<td>3. Forebygge eller behandle leddgikt</td>
<td>3,32 (1,09)</td>
<td>48,5</td>
<td>0,49</td>
</tr>
<tr>
<td>4. Føle seg ung</td>
<td>2,47 (1,29)</td>
<td>22,8</td>
<td>0,67</td>
</tr>
<tr>
<td>5. Forebygge eller behandle kreft.</td>
<td>2,84 (1,22)</td>
<td>31,7</td>
<td>0,68</td>
</tr>
<tr>
<td>6. Bli generelt sannere.</td>
<td>3,78 (1,16)</td>
<td>70,3</td>
<td>0,81</td>
</tr>
<tr>
<td>7. Holde seg friske under en diett.</td>
<td>3,71 (1,27)</td>
<td>65,3</td>
<td>0,41</td>
</tr>
<tr>
<td>8. Unngå å bli syke.</td>
<td>3,76 (1,14)</td>
<td>70,3</td>
<td>0,82</td>
</tr>
<tr>
<td>9. Dersom noen føler seg trette og utkjørte, trenger de sannsynligvis mer vitaminer eller mineraler.</td>
<td>3,33 (0,70)</td>
<td>40,8</td>
<td>0,46</td>
</tr>
<tr>
<td>10. Mange sykdommer, særlig leddgikt og kreft, skyldes delvis mangel på vitaminer og mineraler.</td>
<td>2,47 (1,12)</td>
<td>21,6</td>
<td>0,44</td>
</tr>
<tr>
<td>11. Folk kan beskytte helsa ved å innta mer vitaminer enn de normalt trenger.</td>
<td>2,10 (1,22)</td>
<td>18,4</td>
<td>0,60</td>
</tr>
<tr>
<td>Total</td>
<td>3,17 (0,73)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*aAndel som svarte ”ganske enig” eller ”svært enig”.

En korrelasjonsanalyse med PBFH og alle de omtalte holdningsvariablene ble utført. Korrelasjonsmatrisen er vist i Tabell 13 Alle variablene utenom NFC korrelerte signifikant med PBFH. Sterkest var korrelasjonene mellom PBFH og holdninger til alternativ behandling, tro på paranormale fenomener og tro på vitaminer.
Tabell 13 Korrrelasjoner mellom PBFH²-konstruktet og holdningsvariablene

<table>
<thead>
<tr>
<th></th>
<th>1.</th>
<th>2.</th>
<th>3.</th>
<th>4.</th>
<th>5.</th>
<th>6.</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>PBFH</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.</td>
<td>Tro på paranormale fenomener</td>
<td>0,66**</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.</td>
<td>Positiv til alternativ behandling</td>
<td>0,69**</td>
<td>0,58**</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Preferanser for "naturlighet"</td>
<td>0,52**</td>
<td>0,33**</td>
<td>0,51**</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Faith in intuition</td>
<td>0,24*</td>
<td>0,33**</td>
<td>0,18</td>
<td>0,17</td>
<td>1</td>
</tr>
<tr>
<td>6.</td>
<td>Need for Cognition</td>
<td>0,20</td>
<td>0,13</td>
<td>0,04</td>
<td>0,02</td>
<td>-0,07</td>
</tr>
<tr>
<td>7.</td>
<td>Tro på vitaminer</td>
<td>0,51**</td>
<td>0,44**</td>
<td>0,55**</td>
<td>0,48**</td>
<td>0,23*</td>
</tr>
</tbody>
</table>

¹PBFH = Pseudoscientific Beliefs about Food and Health.
* p < 0,05. ** p < 0,01.

Oppsummering av forskningsspørsmålt 3. Pseudovitenskapelige holdninger korrelerte signifikant positivt med tillit til alternativ behandling, tro på paranormale fenomener, preferanser for "naturlighet", tro på vitaminer og tiltro til intuitjon.

4.3 Multippel regresjonsanalyse med holdningsvariabler

For å finne ut i hvilken grad de uavhengige holdningsvariablene kunne predikere troen på pseudovitenskapelige påstander, samlet og hver for seg, ble det først gjort en standard multippel regresjonsanalyse med PBFH-konstruktet som avhengig variabel, og tro på paranormale fenomener, alternativ behandling, preferanser for "naturlighet", tiltro til intuitjon og tro på vitaminer som uavhengige variabler.

Det ble ikke funnet tegn på multikolinearitet mellom de uavhengige variablene, så alle variablene ble beholdt. Modellen med alle holdningsvariablene forklarte 62,6 prosent av variansen på PBHF-konstruktet (F(4) = 27,74, p < 0,001). Positive holdninger til alternativ behandling bidro mest til den forklarte variansen, når de andre variablene ble kontrollert for (β = 0,35, p < 0,001). Tro på vitaminer og tiltro til intuitjon bidro ikke signifikant til modellen.
4.4 Hierarkisk regresjonsanalyse

Ved hjelp av hierarkisk multippel regresjon ble det undersøkt om den ovennevnte modellen fortsatt kunne forklare en signifikant andel av variansen i pseudovitenskapelige holdninger, etter at det ble kontrollert for de demografiske variablene kjønn, alder, studieår og tidligere høyere utdanning. Denne fant at modellen ikke ble signifikant endret av å ta hensyn til disse, da de bare forklarte 4 prosent av variansen (se Tabell 14). Å legge til variablene sykepleierstudent, totalskår i kunnskapstesten, bruk av antioksidanttilskudd og kritiske holdninger til informasjonskilder i analysen økte imidlertid andel forklart varians signifikant. Modell 2 var signifikant \(F(11, 78) = 17,71, p < 0,001 \), og forklarte 73 prosent av variansen i skår på PBFH-konstruktet. Positive holdninger til alternativ medisin forklarte fortsatt størstedelen av variansen, etterfulgt av bruk av antioksidanttilskudd.
Oppsummering av forskningsspørsmål 4. Holdninger til alternativ behandling, tro på paranormale fenomener, preferanser for naturlighet, kunnskap, det å være sykepleierstudent, vanskelighet med å skille mellom vitenskapelig og ikke-vitenskapelig kostholdsinformasjon, tiltro til kostholdsråd fra alternativ behandling samt bruk av antioksidanttilskudd, forklarte til sammen omtrent 73 prosent av variansen i
pseudovitenskapelige holdninger. Pseudovitenskapelige holdninger ble best predikert av holdninger til alternativ medisin, tro på paranormale fenomener, preferanser for naturlighet, og det å være sykepleierstudent. Resultatet ble ikke signifikant endret av å kontrollere for demografiske variabler.
5. Diskusjon

5.1 Oppsummering av svarene på forskningsspørsmålene

I hvilken grad forekommer pseudovitenskapelige holdninger om mat og helse blant helsefagstudenter? For å kartlegge studentenes tro på pseudovitenskapelige påstander, ble det utviklet en Pseudoscientific Beliefs about Food and Health-indeks (PBFH). Indeksen ble validert ved hjelp av semikonfirmerende faktoranalyse og påfølgende reliabilitetsanalyse. Reliabilitetsanalysen fant at indeksen hadde en god intern konsistens, målt med Cronbachs alfa.

På en skala fra 1 til 5 var studentenes gjennomsnittskår på PBFH-indeksen 2,16 (0,54), dvs. at de på de fleste holdningsutsagnene tenderte til å være uenige. Holdningsutsagnene som fikk størst enighetsfrekvens var ”Man bør drikke 8 glass vann om dagen” (70 %), ”Melk danner slim i halsen” (45 %), ”Vann renser kroppen for avfallsstoffer og smører nervcellene” (43 %) og ”Alle organer i kroppen kan påvirkes ved å massere bestemte punkter på foten” (33 %). Ingen sa seg enig i påstanden ”Røde drikker gir mer hemoglobin”, men ni prosent var hverken enig eller uenig.

Tiltro til pseudovitenskapelige helsepåstander og sammenhenger med utdanning, holdninger til kostholdsinformasjon, kunnskap om ernæring og helse og bruk av kosttilskudd. Bakgrunnsvariablene som ble undersøkt var kjønn, alder, studieretning, kunnskap om mat og helse, bruk av kosttilskudd og kritisk holdning til kostholdsinformasjon. Studentenes skår på PBFH-indeksen korrelerte negativt med skåren på kunnskapstesten, mens det å være sykepleierstudent, å ta antioksidanttilskudd, å ha tiltro til kostholdsråd fra alternative behandlere og å synes det er vanskelig å skille mellom vitenskapelig og ikke-vitenskapelig kostholdsinformasjon, korrelerte signifikant positivt med PBFH.
Tiltro til pseudovitenskapelige helsepåstander og sammenhenger med tro på alternativ behandling, paranormale fenomener, tenkemåter, tro på vitaminer og preferanser for ”naturlighet”. Med unntak av rasjonell tenkning (Need for Cognition-konstruktet), korrelerte alle holdningsvariablene som ble undersøkt i dette forskningsspørsmålet signifikant med PBFH. Sterkest var de positive korrelasjonene mellom PBFH og holdninger til alternativ behandling, tro på paranormale fenomener og tro på vitaminer.

Forklaring på tiltro til pseudovitenskapelige helsepåstander. Hierarkisk multippel regresjonsanalyse viste at det å være sykepleierstudent, å bruke antioksidanttilskudd, tiltro til at metoder innen alternativ behandling (f.eks. helsekost) gir troverdige kostholdsråd, tro på paranormale fenomener, positiv holdning til alternativ behandling og preferanse for det naturlige, kunne forklare hele 73 prosent av variansen i skåren på PBFH, hvis man kontrollerte for kjønn, alder, studieår og tidligere høyere utdanning. Positiv holdning til alternativ behandling, bruk av antioksidanttilskudd og tiltro til kostholdsråd innen alternativ behandling bidro mest til å predikere oppnådd varias i PBFH.
5.2 Resultatdiskusjon

Her vil resultatene av forskningsspørsmålene bli sammenliknet med tidligere undersøkelser, og mulige forklaringer på funnene vil bli diskutert.

Tro på pseudovitenskapelige helsepåstander blant helsefagstudentene. Siden en sentral del av denne studien var å utvikle et *nytt* spørreskjema for å måle pseudovitenskapelige holdninger om mat og helse, er det ikke mulig å sammenlikne resultatene direkte med tidligere studier. Mange av holdningsleddene som inngikk i spørreskjemaet har derimot vært brukt tidligere, riktig nok i andre studiepopulasjoner. Lindeman et. al (2000) gjorde en faktoranalyse av skalaen *Magical Beliefs about Food and Health* (MBFH), og fant to hovedfaktorer; ”General magical beliefs” og ”Animal products as food contaminants”. Gjennomsnittsskåren på den totale skalaen hos dem var 2,41 (*SD* = 0,72), og kvinnene skåret signifikant høyere enn mennene. PBFH-konstruktet som ble testet i herværende studie bygger delvis på MBFH. Gjennomsnittsskåren var her noe lavere, og det var ingen signifikante forskjeller mellom kjønnene. Dette bør imidlertid ses i sammenheng med at det bare var 16 prosent menn i dette utvalget. Andre har også funnet ikke-signifikante sammenhenger mellom tro på pseudovitenskapelige påstander og kjønn (Johnson & Pigliucci, 2004).

Sammenheng mellom PBFH og kunnskap. Når det gjelder kunnskap om mat og helse, kan denne studien sammenliknes med masteroppgaven til Dalane (2011), ettersom mange av kunnskapsspørsmålene var det samme. I hennes studie var andelen korrekte svar lavere enn i min (hhv. 61 og 73,3 prosent). Dalane (2011) inkluderte imidlertid kun sykepleiere. Sykepleierstudentene (n = 21) hadde i min undersøkelse en signifikant lavere gjennomsnittsscore enn ernærings- og samfunnsernæringsstudentene.

Selv om kunnskapsnivået generelt var forholdsvis høyt, var det noen spørsmål som fikk overraskende få riktige svar. På spørsmålet ”Hva bør ikke være en del av maten – gener,
karbohydrater, proteiner eller klor?” svarte over halvparten ”gener”. Lignende misforståelser om gener i maten har vært rapportert tidligere i den generelle befolkningen (Gaskell, Allum, & Stares, 2003). Videre svarte bare rundt 25 prosent riktig på spørsmålet om hva som har mest kalorier av smør eller margarin. At energi- og fettinnholdet i margarin og planteoljer underestimeres har vært vist i andre undersøkelser (Saulais, Doyon, Ruffieux, & Kaiser, 2011). Dette kan tyde på at mange av studentene hadde mangelfulle matvarekunnskaper, men på den annen side svarte de fleste riktig på de øvrige spørsmålene om næringsstoffer i ulike matvarer.

Sammenheng mellom PBFH og tro på alternativ behandling, tenkemåter, paranormalitet, tiltro til det naturlige og holdninger til og bruk av kosttilskudd.

Lindeman et al. (2000) fant at deres MBFH-skala korrelerte signifikant positivt med intuitiv tenkning (r = 0,24) og signifikant negativt med rasjonell tenkning (r = -0,12). MBFH korrelerte dessuten positivt med positive holdninger til alternativ behandling (r = 0,35).

Sammenhengen mellom PBFH og positive holdninger til alternativ behandling var i min studie i samme retning som hos Lindeman et al. (2000), men korrelasjonskoeffisienten var mye større i denne undersøkelsen ($r_s = 0,69$). En mulig forklaring kan være at Lindeman et. al (2000) målte holdninger til alternativ behandling ved å spørre om deltakerne hadde prøvd eller ønsket å prøvde ulike behandlingsformer, mens holdningene i denne undersøkelsen ble målt ved hjelp av holdningsutsagn som gikk ut på alternativ behandling generelt. Den sterke korrelasjonen mellom PBFH og holdninger til alternativ behandling kan til dels også skyldes at noen av holdningsutsagnene i PBFH-konstruktet berører påstander man finner i bestemte alternative behandlingsformer, for eksempel "Mange sykdommer skyldes en ubalanse mellom energistrømninger i kroppen" (akupunktur) og "Du kan oppdage enhver sykdom en person har ved å undersøke irisen (regnbuehinnen)" (iridologi).
De sterke korrelasjonene mellom PBFH, tro på paranormale fenomener og holdinger til alternativ behandling kan være en indikasjon på Saher og Lindemans påstand om at det å tro på alternativ behandling (og kanskje også pseudovitenskapelige tilnærmeringer til mat og helse?) deler felles grunn med paranormale fenomener (Saher og Lindeman, 2005, s. 1170). I likhet med deres studie og bl.a. Sjöberg og Af Wåhlbergs (2002) var det en signifikant sammenheng mellom tro på alternativ behandling og tro på det paranormale i min. Ifølge Saher og Lindeman (2005, s. 1175) kan alternativ behandling ses på som "part of a larger belief system summarized under the header of paranormal beliefs, ranging from belief in homeopathy and reiki to astrology, precognition and levitation".

Bruken av kosttilskudd i dette utvalget tilsvarte det som har blitt oppgitt av den generelle befolkningen, med høyest forbruk av vitamintilskudd (Totland et al., 2012). Et slående unntak var at hele 73 prosent av samfunnsernæringsstudentene rapporterte å bruke vitamintilskudd. På den annen side var bruken lavest blant fysioterapistudentene. Det må imidlertid understrekas at det var få respondenter i disse to gruppene, og at de kan være lite
representative. Bruken av kosttilskudd blant helsepersonell har vært beskrevet i andre studier, som nevnt i teorikapittelet, som også har funnet et høyere forbruk av kosttilskudd blant disse enn den øvrige befolkningen.

Nasjonalt råd for ernæring anbefaler ikke kosttilskudd til folk flest (Nasjonalt råd for ernæring, 2011). Denne studien undersøkte ikke årsaker til bruk av kosttilskudd. Studentene ble imidlertid bedt om å oppgi hvor enige de var i ulike påstander om vitamintilskudd, og som det framgår av Tabell 12 var et flertall enig i at vitamintilskudd gir mer energi og forebygger forkjølelse. Sytti prosent var i ganske stor eller svært stor grad enige i at vitamintilskudd bidrar til at man blir generelt sunnere og at man unngår å bli syk. Det finnes imidlertid lite grunnlag for at vitamintilskudd eller andre kosttilskudd bidrar til å forebygge mot eller behandle kronisk sykdom (Byers, 2010; Myung, Kim, Ju, Choi, & Bae, 2010; Nasjonalt råd for ernæring, 2011; NIH State-of-the Science Panel, 2006). Diskrepanser mellom det fremtidige helsepersonell tror om vitamintilskudd og lignende, og det størsteparten av den vitenskapelige litteraturen viser, er problematisk.

5.3 Metodediskusjon

Denne undersøkelsen har en del svake punkter som vil bli problematisert her. Det første og kanskje mest vesentlige punktet er at utvalget er svært lite i forhold til hele målpopulasjonen av ernærings- og helsefagstudenter. Da det heller ikke var mulig å få tall på

Det er mulig at de som valgte å svare gjorde det fordi de hadde særlig sterke meninger om temaet, eller var systematisk forskjellige på andre måter. På den annen side ble det sagt tydelig fra i e-postinvitasjonen til studentene at undersøkelsen handlet om mat og helse, noe som er et tema som burde være av interesse for målgruppen. Den lave responsen kan også skyldes mangel på tid, eller at invitasjonene ble oversett. Ettersom studentene bare ble forespurt om å delta per e-post, kan de ha følt seg lite forpliktet til å delta enn om undersøkelsene hadde blitt utført i for eksempel klasserom. Tatt i betraktning hvor flokete det i flere tilfeller var å få sendt invitasjonen til studentene, kan man imidlertid spørre seg om dette ville ha vært mer en mer praktisk fremgangsmåte. Da det viste seg å være svært problematisk å oppnå førstegangskontakt med de studieansvarlige ved de ulike institusjonene, tok det mye lengre tid enn planlagt å få distribuert undersøkelsen. Da undersøkelsen endelig kunne starte, var eksamensperioden i gang, og studentene gikk ut i sommerferie kort tid etter.

Denne studien var uansett eksplorerende av natur, og det ble fra begynnelsen av ikke satt noe mål om å skaffe et representativt utvalg. Konklusjoner fra eksplorerende faktoranalyse kan heller ikke ekstrapoleres utover det bestemte utvalget i undersøkelsen (Field, 2009, s. 637). Resultatene må følgelig også ses på som preliminære og hypotesegenererende.

5.3.1 Potensielle feilkilder (responsbias). Det er flere elementer knyttet til besvaringen av spørreundersøkelsen som kan være truende for validiteten. Studentene kan som nevnt ha hatt varierende grad av motivasjon og interesse for å delta i undersøkelsen, noe som kan ha påvirket hvordan de svarte. Spørreskjemaet var også relativt langt, så
konsentrasjonen og entusiasmen kan ha endret seg underveis i besvaringen. De kan for eksempel ha svart vilkårlig for å bli fortere ferdig. Slike omstendigheter kalles generelt for "responsbias" (Villar, 2008), og er en potensiell kilde til systematiske skjevheter ("bias"). Responsbias kan blant annet være knyttet til spørreskjemaets lengde og vanskelighetsgrad, rekkefølgen på spørsmålene eller svaralternativene, eller respondentens ønske om å svare sosialt "akseptabelt".

I undersøkelsen ble det spurrt om en rekke ukonvensjonelle og tidvis kontroversielle påstander. Et velkjent fenomen i spørreundersøkelser som da er verdt å trekke fram, er såkalt
sosial ønskverdighetsbias (social desirability bias), som betyr at respondentene ikke svarer helt oppriktig, men svarer slik de tror det blir forventet av dem (Ringdal, 2007). Nyere forskning tyder imidlertid på at bruk av nettbaserte spørreskjemaer kan redusere risikoen for sosial ønskverdighetsbias (Kreuter, Presser, & Tourangeau, 2008; van Gelder, Bretveld, & Roelveld, 2010).

Å bruke holdningsutsagn som respondentene skal si seg enig eller uenig i kan også skape et **føyelighetsproblem** ("acquiescence response") (Schaeffer & Presser, 2003), dvs. at respondentene får en tendens til å slutte seg til påstanden, uavhengig av innholdet i den, for å være høflige eller på grunn av satisfisering. Schuman og Presser (1981) mener imidlertid at selv om slike vanlige feilkilder i spørreundersøkelser gjør at man ikke kan stole for mye på marginalene, vil sammenhengene mellom variablene ofte være like, ettersom de ikke er like utsatt for samme ustabilitet.

5.3.2. Diskusjon av spørreskjemaet. I tillegg til svakheter ved administrasjonen og besvaringen av spørreskjemaet, bør også selve innholdet i spørreskjemaet diskuteres. Ett spørsmål er for eksempel hvor godt spørreskjemaet redegjør for de konstruktene som ble målt. Som beskrevet i teorikapittelet, finnes det ingen absolutte definisjoner på hva som kan regnes som pseudovitenskap. Som Lindeman og Svedholm (2012, s. 1) påpeker: "Consensus is lacking or such basic questions as why belief in immortal souls should be considered paranormal (supernatural, magical, superstitious) while the belief that vitamin C prevents flu should not".

Det meste av forskningen som forsøker å kartlegge tro pseudovitenskap i ulike grupper måler tro på overnaturlige vesener og parapsykologi og lignende, mens svært få har undersøkt misoppfatninger knyttet til mat og helse som kan karakteriseres som pseudovitenskapelige. Det nærmeste jeg kom var tidligere nevnte Magical Beliefs about Food and Health (Lindeman et al., 2000) og Pseudoscientific Beliefs Index (Lundström &
Jakobsson, 2009). Selv om mange av holdningsutsagnene altså var hentet fra allerede utviklede spørreskjemaer, kan det ikke garanteres at utsagnene var gode eller relevante i utgangspunktet.

Utviklingen av et konstrukt er utvilsom en subjektiv prosess. For noen av de inkluderte holdningsutsagnene vil det nok derfor være rom for å diskutere hvorvidt de bør regnes som pseudovitenskapelige eller ikke. Utsagnet "DNA har ingen innflytelse på hvilken sykdom en person kan rammes av i løpet av livet", som var hentet fra Lundström og Jakobsson (2009) er for eksempel ikke pseudovitenskapelig, men ble tatt med i PBFH-konstruktet fordi det å være uenig i påstanden kan hevdes å være pseudovitenskapelig. Som tidligere nevnt er det ikke umulig at noen av påstandene som her ble kategorisert som pseudovitenskapelige en gang i fremtiden viser seg å ha belegg. Jeg hevder imidlertid at faste påstander som må anses som grunnløse ut i fra dagens viten, også bør regnes som pseudovitenskap.

5.4 Generell diskusjon

I denne delen av diskusjonskapittelet vil jeg komme med noen friere betraktninger og refleksjoner over hva funnene i undersøkelsen indikerer. Dette er til en viss grad preget av mine egne påstander og spekulasjoner.

Kunnskap om vitenskapsfilosofi og vitenskapelig metode er et viktig verktøy for å skille genuin vitenskap fra tvilsomme påstander (Afonso & Gilbert, 2010). Dersom denne kunnskapen er utilstrekkelig blant flere av helsefag- og ernæringsstudentene, mangler de kanskje et nødvendig grunnlag for å se hvor vitenskapen slutter og hvor pseudovitenskapen begynner. Målet for opplæringen bør kanskje derfor fokusere vel så mye på hvordan studentene tenker som på hva de tenker, og at det er et behov for å lære teknikker for kritisk tenkning.

6 Avvisning av begreper som sannhet og objektivitet, mistro til vitenskapens legitimitet.
6. Konklusjoner og implikasjoner

Formålet med denne masteroppgaven var å utforske helsefagstudenters tiltro til pseudovitenskapelige helsepåstander. Det ble utviklet et spørreskjema og en *Pseudoscientific Food and Health Belief*-indeks som så ut til å ha god intern konsistens. I tråd med hypotesene ble det funnet at graden av enighet med de pseudovitenskapelige påstandene korrelerte signifikant med holdninger til alternativ behandling, paranormale fenomener, bruk av antioksidanttilskudd og tiltro til kostholdsråd innen alternativ behandling. Studien gir dermed en teoretisk, preliminær indikasjon på hva som forklarer holdninger til pseudovitenskapelige påstander om mat og helse.

Studier innen fagfelt som blant annet sykepleie og psykoterapi, har vist at de som skårer relativt høyt på evner til kritisk tenkning i større grad bruker evidensbaserte behandlinger og i mindre grad bruker behandlinger som ikke har belegg. Lavere kritisk tenkning blant psykoterapeuter var for eksempel assosiert med flere feilaktige meninger om helse og en større tendens til en intuitiv tenkemåte i før nevnte studie av Gaudiano et. al (2011).
Det har blitt hevdet at utdanningssystemene legger for mye vekt på tekniske ferdigheter, fremfor å bidra til å overføre kunnskap om eller evner i den kritiske tenkningen som må til for å redusere troen på pseudovitenskap (Ede, 2000; Goode, 2002; Martin, 1994).

En kritisk tenkende person må ifølge Ennis (1993, s. 180) kunne:

1) Bedømme kilders pålitelighet
2) Identifisere konklusjoner, årsaker og forutsetninger
3) Bedømme kvaliteten til et argument, inkludert dets årsaker, forutsetninger og belegg.
4) Utvikle og forsvare et standpunkt om et tema.
5) Spørre passende, klargjørende spørsmål.
6) Planlegge eksperimenter og bedømme eksperimentelle design
7) Definere begreper egnet for konteksten
8) Ha et åpent sinn
9) Være velinformert
10) Trekke konklusjoner når det er grunnlag for det, men med forbehold (ibid.).

Tidligere studier av helsefagstudenter i Norge har funnet mangelfulle evner til å etterlyse kriterier for vitenskapelighet i korte nyhetsnotiser (Dalane, 2011; Pettersen, 2005).

Haard, Slater og Long (2004) fant at selv doktorgradsstudenter innen naturvitenskapelige fag lot seg påvirke av vitenskapelig lydende sjargong i pseudovitenskapelige helsepåstander (for eksempel ble "Researchers found recently that shark cartilage contains macro-proteins that carry and angiogenesis inhibitor” bedømt som en mer troverdig påstand enn "Researchers have now found cancer-fighting agents in cartilage"). Dette kan ha en betydning for hvordan undervisningen i disse fagene kan bidra til å fremme studentenes kritiske vurdering av kostholds- og helsepåstander.
Martin (1994) mener at studenter bør eksplisitt lære om pseudovitenskap som en del av den vitenskapelige allmenndannelsen. Ikke for å gjøre studentene positive til det pseudovitenskapelige, men for å lære dem å kritisk granske pseudovitenskapelige påstander:

The goal should not be to instill such belief in students but to get them to think critically about such beliefs The goal of science education should not just be to get students to understand science but to be scientific Learning to think critically about pseudoscientific and paranormal beliefs is part of being scientific. (ibid., s. 357).

Martin (1994) foreslår videre en rekke måter pseudovitenskap kan inkluderes i undervisningen på:

- Studentene kan kritisk gjennomgå historiske tilfeller av pseudovitenskap parallelt med tilfeller av genuin vitenskap.
- Studentene kan lese forskningsartikler og pseudovitenskapelige artikler om samme tema, og granske forskjeller i bruk av evidens, hypoteser og metodologiske holdninger.
- Det kan gjøres eksperimenter eller laboratorieforsøk for å teste pseudovitenskapelige påstander.
- Studentene kan finne eksempler på pseudovitenskapelig tenkning og teorier i mediene.
- Pseudovitenskap kan omtales i egne kapitler i lærebøkene.
- Man kan teste studentenes evne til å gjenkjenne pseudovitenskap.

eksplisitt motbevisning av myter og tvilsomme påstander er mer effektivt for å redusere misoppfatninger enn generell vitenskapsundervisning, og at det å analysere materiell som inneholder feilinformasjon og utvikle evner til å oppdage feil, kan være et effektivt læringsverktøy (Bedford, 2010; Kowalski & Taylor, 2009; Manza, Hilperts, Hindley, Marco, Santana & Hawk, 2010; McLean & Miller, 2010).

Resultatene i denne studien indikerer at troen på pseudovitenskap i utvalget ikke kan forklares med vilje til rasjonell tenkning eller tilgang til helseinformasjon. Dette setter spørsmålstegn ved antakelsen om at vitenskapelig basert helseinformasjon som appellerer til det rasjonelle vil bidra til å erstatte irrasjonelle og feilaktige oppfatninger om mat og helse. Informasjonskampanjer om kosthold bør kanskje også ta hensyn til misoppfatningene folk har om mat og helse?

Forslag til videre arbeid med temaet

Det finnes mange måter å bygge videre på dette arbeidet på. Å gjøre en mye større studie med et mer representativt utvalg er et åpenbart første skritt, og en utfordring i seg selv. Det kan også være behov for å forbedre og validere spørreskjemaet og PBFH-konstruktet ytterligere. Med de manglene ethvert spørreskjema har, kan dette med fordel suppleres av en mer kvalitativ undersøkelse. Elementer det hadde vært interessant å se nærmere på er bl.a. hvor viktig studentene anser vitenskapelighet og evidens som kriterier? Hvilken rolle spiller ekspertene for studentenes kostholdoppfatninger, og hvem er de?
Referanser

Dalane, J. Ø. (2011). *Nutrition literacy hos sykepleiere.* (Masteroppgave i mat, ernæring og helse), Høgskolen i Akershus, Kjeller.

Nasjonalt informasjonsenter for alternativ behandleing. (2012). Kategorier av alternativ behandling, hentet fra

http://nifab.no/om_alternativ_beachding/hva_er_alternativ_beachding/kategorier_av_ab

Pacini, R., & Epstein, S. (1999). The relation of rational and experiential information processing styles to personality, basic beliefs, and the ratio-bias phenomenon. *Journal*
of Personality and Social Psychology, 76(6), 972-987. doi: 10.1037/0022-3514.76.6.972

Vedlegg

Vedlegg A: Spørreskjema

Vedlegg B: Forespørsel til dekaner og studieledere

Vedlegg C: Invitasjon til studentene

Vedlegg D: Tilråding fra Norsk samfunnsvitenskapelig datatjeneste
Vedlegg A

1) Her kommer noen påstander om mat og helse. Ut ifra din kunnskap, i hvilken grad vil du si at disse påstandene stemmer?

<table>
<thead>
<tr>
<th>I svært liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Vet ikke</th>
</tr>
</thead>
</table>

Alle friske personer som spiser et variert og balansert kosthold, kan få i seg nok vitaminer og mineraler gjennom den vanlige maten. ☐ ☐ ☐ ☐ ☐

Dersom noen føler seg trette og utkjørte, trenger de sannsynligvis mer vitaminer eller mineraler. ☐ ☐ ☐ ☐ ☐

Mange sykdommer, særlig leddgikt og kreft, skyldes delvis mangel på vitaminer og mineraler. ☐ ☐ ☐ ☐ ☐

Folk kan beskytte helsa ved å innta mer vitaminer enn de normalt trenger. ☐ ☐ ☐ ☐ ☐

For de fleste mennesker er hovedårsaken til dårlig helse at de ikke spiser riktig. ☐ ☐ ☐ ☐ ☐

2) Her kommer flere påstander om mat og helse. Ut ifra din kunnskap, i hvilken grad vil du si at disse påstandene stemmer?

<table>
<thead>
<tr>
<th>I svært liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
</table>

Frukt må spises på tom mage for at kroppen skal kunne fordøye den ordentlig. ☐ ☐ ☐ ☐ ☐

Hvis du svelger tyggegummi, kan den ligge igjen i magen i 7 år. ☐ ☐ ☐ ☐ ☐

Melk danner slim i halsen. ☐ ☐ ☐ ☐ ☐

Å spise om kvelden er fetende. ☐ ☐ ☐ ☐ ☐

Man bør drikke minst 8 glass vann om dagen. ☐ ☐ ☐ ☐ ☐

Syreholdig mat gir for mye syre i magesaften. ☐ ☐ ☐ ☐ ☐

Vann med bobler (kullsyre) er forsurende og bryter ned skjelettet. Man bør derfor bare drikke rent vann. ☐ ☐ ☐ ☐ ☐
Melk skaper et surt miljø i kroppen og trekker derfor kalk (kalsium) ut av skjelettet.

Rå mat renser opp nervesystemet.

Vann renser kroppen for avfallsstoffer og smørre nervecellene.

Når vi bearbeider maten blir enzymene i maten ødelagt. Man bør derfor ta enzymtilskudd som hjelper deg med å fordøye måltidene.

Å drikke kaldt vann etter maten hemmer fordøyelsen.

Man bør bare spise én type stivelse og én type protein på samme tid.

Kroppens kjemi bestemmes av blodtypen. Mange matvarer bør derfor unngås av personer med en bestemt blodtype.

Å spise mat med mye klorofyll er viktig for å gi oksygen til blodet

4) I hvilken grad er du enig i disse utsagnene?

Mange sykdommer skyldes en ubalanse mellom energistrømninger i kroppen.

Feil kosthold får maten til å råte i kroppen.

Hvis vi ikke renser kroppen, vil skadelige avfallsstoffer bli værende igjen i den.

Siden kroppen består av 70 prosent vann, bør vi ha et kosthold som har et vanninnhold på omtrent 70 prosent.

Røde drikker gir mer hemoglobin
Jeg ville ikke ha spist mat som hadde vært i kontakt med smult, selv om smulten hadde vært fjernet fullstendig.
Animalsk blod gjør maten uren.
Inntak av kjøtt får folk til å oppføre seg aggressivt.
Sammenliknet med vegetarmat, vekker kjøtt mer dyriske instinkter i folk.
Tretthet er et symptom på en overdrevent sur kropp.
Mange sykdommer og plager skyldes høy surhetsgrad (lav pH) i kroppsvæsker og -vev.

5) Her kommer noen påstander basert på hvordan mat blir produsert. I hvilken grad er du enig i disse utsagnene?

<table>
<thead>
<tr>
<th></th>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kjemikalier i maten fjerner mye av matens helsemessige verdi</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Menneskeskappe vitaminer er like bra som naturlige vitaminer.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Mye av maten er nå så bearbeidet og raffinert at den har mistet sin helsemessige verdi.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Sprøytemidler gjør maten helsefarlig, selv om de blir brukt forsiktig og kontrollert.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Mange matvarer taper mye av næringsverdien fordi de blir fraktet langt og lagret lenge</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Mat dyrket med kunstgjødsel er like sunn som mat dyrket med naturlig gjødsel.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
6) I hvilken grad mener du følgende påstander er korrekte?

<table>
<thead>
<tr>
<th>Påstand</th>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>I stor grad</th>
<th>I ganske stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Smerte forbundet med revmatisme kan reduseres hvis du bruker magnetarmbånd.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alle organer i kroppen kan påvirkes ved å massere bestemte punkter på foten.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Betennelser kan kureres ved å legge edle krystaller på det syke området.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DNA har ingen innflytelse på hvilken sykdom en person kan rammes av i løpet av livet.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Det er mulig å bestemme kjønnet til et foster ved å svinge en ring i en tråd over magen til moren.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Du kan oppdage enhver sykdom en person har ved å undersøke irisen (regnbuehinnen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anti-depressiva ("lykkepiller") får deg til å føle deg mindre deprimert.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ingen kan helbrede noen ved å legge hendene på den syke.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Det er større risiko for å bli syk på en fredag den 13.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Positiv tenkning kan hjelpe deg med å bli kvitt mindre plager.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Den fysiske og mentale helsen opprettholdes av en underliggende energi eller livskraft.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7) Her kommer noen påstand om alternativ/komplementær medisin. I hvor stor grad vil du si at du er enig i disse?

<table>
<thead>
<tr>
<th>Verken i liten eller stor grad</th>
<th>I svært liten grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Behandlinger som ikke er testet på en vitenskapelig anerkjent måte, bør forkastes.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effektene av alternative terapier skyldes vanligvis en placeboeffekt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative terapier bruker ideer og metoder som konvensjonell medisin kan dra nytte av.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>De fleste alternative terapier stimulerer kroppens naturlige terapeutiske krefter.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg mener de fleste alternative behandlere er kvakksalvere.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg tror de fleste alternative terapier ikke virker.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg ville aldri bruke terapier fra en alternativ behandler.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg vil anbefale alternativ medisin til mine venner dersom de blir syke.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg stoler på de fleste alternative terapeuter.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7) Her kommer noen påstand om alternativ/komplementær medisin. I hvor stor grad vil du si at du er enig i disse?

<table>
<thead>
<tr>
<th>Behandlinger som ikke er testet på en vitenskapelig anerkjent måte, bør forkastes.</th>
<th>I svært liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Effektene av alternative terapier skyldes vanligvis en placeboeffekt.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternative terapier bruker ideer og metoder som konvensjonell medisin kan dra nytte av.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>De fleste alternative terapier stimulerer kroppens naturlige terapeutiske krefter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg mener de fleste alternative behandlere er kvakksalvere.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg tror de fleste alternative terapier ikke virker.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg ville aldri bruke terapier fra en alternativ behandler.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg vil anbefale alternativ medisin til mine venner dersom de blir syke.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg stoler på de fleste alternative terapeuter.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8) Her er noen grunner til at folk tar tilskudd av vitaminer og mineraler. I hvilken grad mener du disse er gode grunner?

<table>
<thead>
<tr>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>For å få mer energi</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å forebygge forkjølelse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å forebygge eller behandle leddgikt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å føle seg unge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å forebygge eller behandle kreft</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å bli generelt sunnere</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å holde seg friske under en diett</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
For å unngå å bli syke

<table>
<thead>
<tr>
<th>Verken</th>
<th>Jeg har</th>
</tr>
</thead>
<tbody>
<tr>
<td>I svært liten grad</td>
<td>ingen kunnskap</td>
</tr>
<tr>
<td>I liten grad</td>
<td></td>
</tr>
<tr>
<td>I stor grad</td>
<td></td>
</tr>
<tr>
<td>I svært stor grad</td>
<td></td>
</tr>
</tbody>
</table>

9) Noen tar vitaminpiller og lignende for å få i seg ekstra vitaminer eller mineraler. Har du som voksen noen gang tatt (flere svar mulig)

- Vitaminpiller
- Antioksidanttilskudd
- Urter
- Andre lignende produkter (som ginseng, gjærttabletter, leverekstrakt, mineralkapsler, etc)
- Ingen

10) Bruker du noen av disse produktene nå?

- Vitaminpiller
- Antioksidanttilskudd
- Urter
- Andre lignende produkter (som ginseng, gjærttabletter, leverekstrakt, mineralkapsler, etc)
- Ingen

11) I hvilken grad forventet du å føle deg bedre av å ta produkter(ne)?

- I svært liten grad
- I liten grad
- I ganske stor grad
- I svært stor grad
- Vet ikke
12) Her er noen utsagn om det å gå ned i vekt. I hvilken grad er du enig i disse?

<table>
<thead>
<tr>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
</table>

Man kan gå ned betydelig i vekt ved hjelp av massasje. ☐ ☐ ☐ ☐ ☐

Man kan gå ned betydelig i vekt ved bare å svette mye. ☐ ☐ ☐ ☐ ☐

Man kan gå ned betydelig i vekt ved å ta spesielle reseptfrie produkter for å kontrollere appetitten. ☐ ☐ ☐ ☐ ☐

Folk som vil ned i vekt bør spise mer fett, og mindre sukker og stivelse, enn de vanligvis spiser. ☐ ☐ ☐ ☐ ☐

Den eneste måten å gå ned betydelig i vekt på er å spise mindre mat enn kroppen har bruk for. ☐ ☐ ☐ ☐ ☐

Folk som vil ned i vekt bør følge de siste diettene det står om i ukeblader. ☐ ☐ ☐ ☐ ☐

13) Har du gjort noe av følgende tiltak for å kontrollere din egen vekt?

☐ Brukt flytende dietter eller måltidserstattere.
☐ Medisiner eller spesielle preparater for å kontrollere appetitten.
☐ Medisiner eller spesielle preparater for å gå ned i vekt uten å endre på kostholdet.
☐ Mekanisk eller elektrisk massasje
☐ Vibrasjonstrenning
☐ Alt som får deg til å svette for å gå ned i vekt.
☐ Ingen av de nevnte.
☐ Har aldri forsøkt å kontrollere vekta.
14) Har du noen gang gjort noe av dette for å lindre eller behandle en sykdom eller lidelse?

☐ Endret spisevanene eller brukt spesielle matvarer
☐ Brukt noe for å smøre leddene
☐ Brukt massasjestav el.l
☐ Brukt en form for maskin eller utstyr
☐ Brukt ting som spesielle klær, amulett eller andre smykker?
☐ Ingen av de nevnte

16) Det følgende handler om ulike kilder til informasjon om mat og helse. I hvilken grad er du enig i disse utsagnene?

<table>
<thead>
<tr>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
</table>

Jeg tror kroppen min sier fra om hva den trenger av næringsstoffer, uavhengig av hva forskere mener om dette.

Jeg lar meg påvirke av kostholdsråd jeg leser om i aviser, ukeblader o.l.

Jeg har tiltro til at metoder innen alternativ medisin (f.eks. helsekost) gir meg troverdige kostholdsråd.

Jeg synes det er vanskelig å skille vitenskapelig kostholdsinformasjon fra ikke-vitenskapelig kostholdsinformasjon.

Jeg har tiltro til at medias presentasjon av nye vitenskapelige funn omkring sunt kosthold er riktig.

Jeg baserer mitt kosthold på informasjon jeg får fra vitenskapelig anerkjent faglitteratur (f.eks. fagfellevurderte tidsskrifter, Helsedirektoratet, o.l.).
17) I hvilken grad mener du at følgende er gode kilder til informasjon om ernæring og kosthold?

<table>
<thead>
<tr>
<th></th>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aviser, blader eller andre trykte medier</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Ernæringsfysiologer</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Familiemedlemmer eller venner</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Medisinske tidsskrift</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Sykepleiere, leger, farmasøyter eller andre helsearbeidere</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>TV eller radio</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Annet</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>

18) Hvis du ser en annonse eller leser noe om en medisin/terapi/kosttilskudd, hvordan ville følgende informasjon påvirke deg?

<table>
<thead>
<tr>
<th></th>
<th>Ville gi meg mye</th>
<th>Ville gi meg litt</th>
<th>Ville gi meg mindre</th>
<th>Ville gi meg tro på det</th>
<th>Ville gi meg mye</th>
<th>Ville gi meg litt</th>
<th>Ville gi meg mindre</th>
<th>Ville gi meg tro på det</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Produktet er laget av et kjent firma</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Produktet skal hjelpe mot mange tilstander eller sykdommer, ikke bare én.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>En kjent person står frem med at han ble hjulpet av produktet</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Mange vanlige personer står frem med at de ble hjulpet av produktet</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>En lege blir sitert på at produktet er bra</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Produktet ikke bare lindrer problemet, det kurerer sykdommen helt.</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Du kan få diagnosen pr post/e-post</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
<tr>
<td>Produktet er helt nytt</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
<td>□</td>
</tr>
</tbody>
</table>
19) Hva er den viktigste funksjonen til røde blodlegemer?
- Å bekjempe sykdom i kroppen
- Å transportere oksygen til alle deler av kroppen
- Å fjerne karbondioksid fra alle deler av kroppen
- Å produsere stoffer som koagulerer i blodet

20) Hva gjør hjertet?
- Renser blodet
- Produserer blod
- Pumper blod
- Gir blodet oksygen

21) Maten du spiser gir deg energi. Hvor i kroppen blir energien frigjort?
- Magen
- Tarmene
- Blodet
- Cellene

2) Hva skjer i kroppen når du løper og hjertet slår raskere?
- Du forbrenner mer vann
- Du får mer oksygen til hjertet
- Cellene får mer glukose
- Du får mer blod til organene

23) Hvilke næringsstoffer trenger vi ofte?
- Fett
- Karbohydrat
- Aroma
- Hydrogenfluorinkarboner
24) Det er viktig for helsa å spise bladgrønnsaker. Dette er fordi disse grønnsakene inneholder mye av ett eller flere næringsstoffer. Hvilke?

☐ Protein
☐ Karbohydrater
☐ Mineraler
☐ Fett

25) Hva bør ikke være en del av maten?

☐ Gener
☐ Proteiner
☐ Karbohydrater
☐ Klor

26) Tror du de norske offisielle anbefalingene om kosthold gir råd om at folk flest bør spise mer, like mye eller mindre av dette?

<table>
<thead>
<tr>
<th></th>
<th>Mer</th>
<th>Like mye</th>
<th>Mindre</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grønnsaker</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Sukkerrik mat</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fettrik mat</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fiberrik mat</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Fisk</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Saltrik mat</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Frukt og bær</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

27) Hva ligger i begrepet "5 om dagen"?

☐ 3 porsjoner grønnsaker, 2 porsjoner frukt.
☐ 5 porsjoner frukt.
☐ 4 porsjoner frukt, 1 porsjon grønnsaker.
☐ Vet ikke
28) Hvor mange kalorier (kcal) er det i 1 gram av hhv. protein, fett og karbohydrater?
- 5, 9, 7
- 9, 4, 4
- 7, 9, 5
- 4, 9, 4
- 5, 7, 9
- Vet ikke

29) Hva tror du har mest kalorier, smør eller margarin?
- Smør
- Margarin
- Like mye
- Vet ikke

30) Hvilken type fett bør folk flest redusere bruken av?
- Enumettet fett
- Flerumettet fett
- Mettet fett
- Vet ikke

31) Flerumettet fett finner vi hovedsakelig i...
- Vegetabilske oljer
- Meieriprodukter
- Både vegetabilske oljer og meieriprodukter
- Vet ikke

32) Om en person ønsker å redusere mengden fett i kostholdet, hvilken av disse matvarene ville ha vært det beste valget for ham/henne?
- Grillpølser
- Grillet svinekotelett
- Stekt biff
- Stekt kalun

33) Hvor mange av aminosyrene i menneskekroppen er essensielle (må tilføres kroppen gjennom kostholdet)?
34) Hvilken type protein har høyest kvalitet?
- Vegetabilsk protein
- Animalsk protein
- Alle proteinkilder har like høy kvalitet
- Vet ikke

35) Inneholder disse matvarene karbohydrater?

<table>
<thead>
<tr>
<th>Matvaare</th>
<th>Ja</th>
<th>Nei</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ost</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pasta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smør</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sukker</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grøt</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

36) Har disse matvarene lite fett?

<table>
<thead>
<tr>
<th>Matvaare</th>
<th>Ja</th>
<th>Nei</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pasta</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ris</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brød</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nøtter</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Margarin</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Olivenolje</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

37) Er disse matvarene en kilde til kostfiber?
38) Hvorfor anbefales kvinner å ta folsyretilskudd før og under graviditeten?

<table>
<thead>
<tr>
<th>Opplysning</th>
<th>Ja</th>
<th>Nei</th>
<th>Vet ikke</th>
</tr>
</thead>
<tbody>
<tr>
<td>For å forebygge nevralrørsmisdannelser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å forebygge osteoporose senere i livet</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å motvirke kviser</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å redusere væskeansamlinger.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>For å få mer energi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

40) Her kommer noen spørsmål om såkalte "paranormale" konsepter. Hvor enig er du i disse utsagnene?

<table>
<thead>
<tr>
<th>Konsept</th>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>I stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astrologi er en presis måte å forutsi fremtiden på.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Det finnes klarsynte som kan «se» hva som skjer et annet sted.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Horoskopet forteller nøyaktig en persons fremtid.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Noen mennesker har en uforklarlig evne til å forutsi fremtiden.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tarotkort avslører de skjulte sammenhengene i kosmos.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Krystaller kan kurerere sykdommer.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jeg kan føle intuitivt på meg når noe viktig er på vei til å skje.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Folks skjebne avhenger av planetene.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Planter har sjel.

Alt levende er omgitt av en aura.

41) Denne delen omhandler måter å tenke på. I hvilken grad synes du utsagnene nedenfor beskriver deg?

<table>
<thead>
<tr>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>I stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Verken i liten eller ganske stor grad</th>
<th>I svært stor grad</th>
</tr>
</thead>
</table>

Jeg vil heller gjøre noe som krever lite tenkning enn noe som helt sikkert vil utfordre mine tenkeevner.

Jeg liker ikke å ha ansvaret for situasjoner som krever mye tenkning.

Jeg foretrekker heller komplekse enn enkle problemer.

Jeg prøver å forutse og unngå situasjoner hvor det er stor sjanse for at jeg vil måtte tenke dypt om noe.

Jeg synes det er lite tilfredsstillende å tenke hardt og lenge.

Tenkning er ikke det jeg forbinder med moro.

Det å tenke abstrakt er ikke noe for meg.

Jeg foretrekker at livet er fylt med gåter jeg må løse.

Å bare forstå svaret fremfor å forstå årsakene til svaret på et problem, er nok for meg.

Jeg resonnerer ikke godt under press.

Tanken på måtte tenke mye for å nå toppen, appellerer ikke til meg.

Jeg foretrekker å snakke om internasjonale problemer fremfor å sladre eller snakke om kjendiser.
<table>
<thead>
<tr>
<th>Å lære nye måter å tenke på, engasjerer meg ikke veldig mye</th>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>42) I hvilken grad synes du utsagnene nedenfor beskriver deg?</th>
<th>I svært liten grad</th>
<th>I liten grad</th>
<th>Verken i liten eller stor grad</th>
<th>I ganske stor grad</th>
<th>I svært stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
</table>

Jeg ville foretrekke en oppgave som er intellektuell, vanskelig og viktig mer enn en som er litt viktig, men som ikke krever så mye tenkning.

Jeg foretrekker generelt å akseptere ting som de er fremfor å stille spørsmål ved dem

Det er nok for meg at noe får jobben gjort, jeg bryr meg ikke om hvordan eller hvorfor det virker.

Jeg settter ofte mål som bare kan oppnås ved å bruke betydelige mentale krefter.

Jeg har vanskelig for å tenke i nye og ukjente situasjoner

Jeg føler mer lettelse enn tilfredsstillelse etter å ha fullført en oppgave som krever mye mentalt arbeid.

Mine førsteinntrykk av folk er nesten altid rett.

Jeg stoler på mine første følelser om folk.

Når det kommer til det å stole på folk, kan jeg som regel stole på «magefølelsen»

Jeg tror på det å stole på intuisjonen

Jeg kan som regel føle når en person har rett eller feil, selv om jeg ikke kan forklare hvorfor.

Jeg er en svært intuitiv person.

Jeg kan vanligvis merke med en gang når en person lyver.
43) I hvilken grad synes du utsagnene nedenfor beskriver deg?

<table>
<thead>
<tr>
<th>Utsagn</th>
<th>Ikke veldig</th>
<th>Liten</th>
<th>I litt større grad</th>
<th>I stor grad</th>
<th>Jeg har ingen kunnskap om dette</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jeg danner raskt inntrykk av folk.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jeg tror jeg kan bedømme karakter ganske godt ut ifra en persons utseende.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jeg har ofte klare visuelle bilder av ting.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jeg har en meget god rytmesans.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
<tr>
<td>Jeg er god til å visualisere ting.</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>
Vedlegg B

Forespørsel om tillatelse til å gjennomføre en spørreundersøkelse blant studenter

Dette er en forespørsel fra undertegnede masterstudent Erik Arnesen i Samfunnsernæring, HiOA, til Dem om å få tillatelse til å gjennomføre en spørreundersøkelse blant 2.- og 3.-klassestudenter i (...).

Ansvart for studien er førsteamanuensis dr. scient. Sverre Pettersen, HiOA, som også er min veileder. Spørsmål om denne studien kan rettes til ham via e-post.

Til tross for økt vitenskapelig kunnskap om ernæring og helse tilsynelatende mange av tvilsomme, pseudovitenskapelige kostholdsoppfatninger og (for eksempel blodtypedetjenen, megavitaminkurer, "detox"-kurer, osv). Stadig mer utbredte oppfatninger om ernæringens "makt" har forårsaket et vekst i irrasjonell bruk av kosttilskudd og kostholdsregimer. Forbrukerne oversvømmes daglig av mange mer eller mindre villedende helsepåstander som mat og helse. Ikke sjelden blir tvilsom kostholdsinformasjon kledd opp i et kvasivitenskapelig språk (et typisk trekk ved pseudovitenskap), så det å skille mellom det troverdige og det betenkelige, kan være svært utfordrende for gjennomsnittsforbrukeren.

For å kunne orientere seg i informasjonsjungelen om kosthold og helse, og for å kunne skille mellom vitenskapelig og pseudovitenskapelig informasjon, er det trolig nødvendig med vitenskapelig og helsefremmende allmenndannelse (henholdsvis kalt scientific literacy og health literacy på engelsk). Dette kan defineres som personlig evne til å anskaffe seg, bearbeide og forstå grunnleggende helse- og ernæringsinformasjon for videre å kunne ta informerte og sunne valg (Finbråten og Pettersen, 2009).

Sykepleiere er en viktig kilde til helse- og ernæringsinformasjon for folk i samfunnet. Graden av vitenskapelighet i den helseinformasjon som sykepleiere formidler kan få varierende følger for pasienter – og muligens også for ...fagets rennomme som vitenskapelig basert utdanning

Spørreskjemaet har som primære mål å kartlegge sykepleierstudenters grad av pseudovitenskapelige/ikke-vitenskapelige holdninger til mat og helse, dernest hva som karakteriserer studenter som eventuelt i sterk grad har slike holdninger. Funn i denne studien kan bidra til diskusjon om temakeftet som i øyeblikket er i undervisningen i emnet vitenskapsteori og forskningsmetode hos helsefagutdanninger i Norge.

Spørreskjemaet er tilrådet av Norsk Samfunnsvitenskapelig Datatjeneste (NSD), som vurderer forskningsprosjekter iht. personopplysningsloven.
Det er svært viktig for oss å understreke, at vi på ingen måte ønsker at gjennomføringen av denne studien skal forstyrre eller gå ut over pågående og viktige aktiviteter for studentene og de ansatte.

Vennlig hilsen

Erik Arnesen
Masterstudent i samfunnsernæring, HiOA
E-post: s270735@stud.hioa.no

Sverre Pettersen
Førsteamanuensis, dr. scient. og prosjektveileder, HiOA
E-post: kjellsverre.pettersen@hiak.no
Vedlegg C

Invitasjon til deltagelse i en spørreundersøkelse om mat og helse

Vi vil med dette invitere deg som helsefagstudent til å svare på en internettbasert spørreundersøkelse om dine holdninger til aspekter rundt mat og helse.

Bakgrunnen for undersøkelsen er den pågående samfunnsdebatten om mat og helse, der både vitenskapelige og ikke-vitenskapelige forklaringer kommer frem. I dette prosjektet ønsker vi å studere hvilke holdninger helsefagstudenter har til en del påstander om ernæring og helse.

Funnene vil kunne bidra til å forbedre ernæringsundervisning og kostholdsupplysning. Studien er et masterprosjekt som ledes og veiledes av førsteamanuensis dr. scient. Sverre Pettersen, HiOA.

Det er frivillig å delta i undersøkelsen. Du kan når som helst velge å trekke deg fra studien, uten å oppgi grunn eller at det får noen konsekvenser for deg. Å fylle ut spørreskjemaet tar omtrent 20-25 minutter, men du kan bruke så lang tid du vil.

Prosjektet er tilrådet av Norsk Samfunnsvitenskapelig Datatjeneste (NSD), som vurderer forskningsprosjekter iht. personopplysningsloven.

Med håp om at du har lyst til å delta i denne spørreundersøkelsen,

Erik Arnesen
Masterstudent i samfunnsernæring, HiOA
E-post: s270735@stud.hioa.no

Sverre Pettersen
Førsteamanuensis, dr. scient. og prosjektveileder, HiOA
E-post: kjellsverre.pettersen@hioa.no
Vedlegg D

Norsk samfunnsvitenskapelig datatjeneste AS
NORWEGIAN SOCIAL SCIENCE DATA SERVICES

Kjell Sverre Pettersen
Institutt for helse, ernæring og ledelse
Høgskolen i Oslo og Akershus
Postboks 423
2001 LILLESTRØM

Vår dato: 19.01.2012
Vår ref: 29319 / HT

Vær den: 29319 / HT

TILRÅDING AV BEHANDLING AV PERSONOPPLYSNINGER

Vi viser til melding om behandling av personopplysninger, mottatt 10.01.2012. Meldingen gelder prosjektet:

29319
Behandlingsansvarlig
Høgskolen i Oslo og Akershus, ved institusjonens øverste leder
Kjell Sverre Pettersen

Personvernombudet har vurdert prosjektet, og finner at behandlingen av personopplysninger vil være regulert av § 7-27 i personopplysningsforskriften. Personvernombudet tilhører at prosjektet gjennomføres.

Personvernombudets tilrådelse forutsetter at prosjektet gjennomføres i tråd med opplysningene gitt i meldeskjemaet, korrespondanse med ombudet, eventuelle kommentarer samt personopplysningsloven/-helseregistrewenn med forskrifter. Behandlingen av personopplysninger kan settes i gang

Det gjøres oppmerksom på at det skal gis ny melding dersom behandlingen endres i forhold til de opplysninger som ligger til grunn for personvernombudets vurdering. Endringsmeldinger gis via et eget skyrm.

Personvernombudet har lagt ut opplysninger om prosjektet i en offentlig database,
http://www.nsd.uib.no/personvern/prosjektoversikt.jsp

Vennlig hilsen

Vigdis Namtvedt Kvalheim

Hildur Thorarinsen

Kontaktperson: Hildur Thorarinsen tlf: 55 58 26 54
Vedlegg: Prosjektvurdering
Kopi: Erik Arnesen, Ettertadsetta 33 A, 0660 OSLO

Avdelingsansvarig i District Oficer:
OSLO: NSD, Universitetsparken Os., Postboks 1025 Blindern, 0319 Oslo, Tlf: +47-22 85 52 11, nsd@uib.no
TRYGGERI: NSD: Norges teknisk-naturvitenskapelige universitet, 7000 Trondheim, Tlf: +47-73 99 19 07, k瑟n@ntnu.no
TROND: NSD: Nils Universitetet i Trondelag, 7007 Trondheim, Tlf: +47-77 64 43 36, mariu-ann.andersen@uib.no